🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
DemoInstallSign in
Socket

dynamic-cursor-rules

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

dynamic-cursor-rules

Generate and manage documentation and task tracking for Cursor IDE projects

1.10.5
PyPI
Maintainers
1

Cursor Rules

A high-performance framework for managing custom instructions and development workflows for AI assistants within the Cursor IDE.

Installation

# Standard installation
pip install dynamic-cursor-rules

# Installation with LLM support (required for most features)
pip install dynamic-cursor-rules[llm]

Core Workflow

Cursor Rules helps structure AI-assisted development by generating foundational documents, creating context-specific AI rules, and managing development phases.

  • Initialize Project (cursor-rules documents): Start by generating a suite of project documents from an initialization file (e.g., project_init.md). This creates:
    • documentation/product_requirements.md (PRD)
    • documentation/technical_stack.md
    • documentation/action_items.md (Task checklist)
    • documentation/action_items.json (Machine-readable tasks, if parsing succeeds)
    • documentation/development_log.md
    • Optionally: api_documentation.md, backend_structure.md, etc.
    • Initial AI rules in .cursor/rules/ based on the project context.
  • Start a Phase (cursor-rules start-phase): Select a phase from action_items.md (e.g., "Project Setup") to begin work. This command:
    • Generates a detailed documentation/Phase_X_Implementation_Plan.md using an LLM.
    • Creates/Updates .cursor/rules/Current_Phase_Focus.mdc, an alwaysApply: true rule telling the AI the current focus and referencing the implementation plan.
  • Develop with AI: Work on the tasks for the current phase, leveraging the AI assistant. The Current_Phase_Focus.mdc and other relevant rules (matched by globs) provide context to the AI.
  • Complete a Phase (cursor-rules complete-phase): Once the phase's tasks are done, run this command. It:
    • Marks the corresponding phase's tasks as complete ([x]) in documentation/action_items.md.
    • Appends a completion record to documentation/development_log.md.
    • Removes the .cursor/rules/Current_Phase_Focus.mdc rule.
  • Repeat: Use start-phase for the next phase in action_items.md.

Document Generation

The documents command bootstraps the project documentation using an LLM.

# Generate all documentation from an initialization document
cursor-rules documents path/to/your/project_init.md -o /path/to/project/root

This command generates the core documents and initial Cursor rules based on the provided initialization file. It uses a PRD-centric approach, where the generated PRD informs all subsequent document and rule creation.

Generated Files:

  • documentation/: Contains PRD, Tech Stack, Action Items (MD/JSON), Dev Log, and any generated optional documents (API docs, etc.).
  • .cursor/rules/: Contains AI instruction rules (.mdc files) tailored to the project.

Cursor AI Rules (.mdc Files)

These files, stored in .cursor/rules/, guide the AI assistant.

Rule Structure (YAML Front Matter)

Each .mdc file must start with YAML front matter enclosed in ---:

---

description: A clear, semantic description of WHEN and WHY this rule applies. Used by the AI to determine relevance, especially when alwaysApply is false. (Required, plain text)
globs: path/glob/**/*.py, another/pattern/*.js # Comma-separated string of file globs this rule applies to. (Required)
alwaysApply: false # Use lowercase 'true' or 'false'. true = always apply; false = apply based on globs/description. (Required)
---

# Rule Title (Human Readable)

## Rule Content Section 1

- Use standard Markdown for detailed instructions.
- Provide actionable guidance (Do this, avoid that).
- Include project-specific context.

### Good Example:
\`\`\`python
# Code demonstrating the desired pattern
print("Hello")
\`\`\`

### Bad Example:
\`\`\`python
# Code demonstrating an anti-pattern
pass # Avoid empty blocks
\`\`\`

## Rule Content Section 2
... more guidance ...

## File Context References
# Point to relevant files in your codebase or other rule files
@file: src/core/utils.py
@file: .cursor/rules/Python_Backend_Rules.mdc

Key Concepts:

  • description: Essential for AI understanding. Explains purpose and applicability.
  • globs: Triggers automatic attachment when working on matching files (if alwaysApply: false). Use specific patterns. Comma-separated string.
  • alwaysApply: If true, the rule is always active. If false, depends on globs and AI assessment based on description. Use lowercase true/false.
  • # Title & Content: Human-readable title and Markdown instructions appear after the closing ---.
  • @file:: Crucial for providing concrete examples from the codebase or chaining related rules.

Generated Rules:

The documents command generates initial rules like:

  • General_Project_Guidelines.mdc (alwaysApply: true, includes project summary, phase, goals, structure)
  • Technology-specific rules (e.g., Python_Backend_Rules.mdc, React_Frontend_Rules.mdc) based on detected stack (alwaysApply: false, specific globs).
  • Core standard rules (Testing_Guidelines.mdc, Security_Best_Practices.mdc, etc.) (alwaysApply: false, relevant globs).

Phase Focus Rule:

The start-phase command creates/overwrites .cursor/rules/Current_Phase_Focus.mdc (alwaysApply: true) to provide the AI with specific strategic guidance for the active development phase, linking to the detailed implementation plan. This file is removed by complete-phase.

Phase Management CLI

Manage the development workflow phases:

# Start work on a specific phase from action_items.md
# (Use the exact phase title string as the identifier)
cursor-rules start-phase "Project Setup and Environment Configuration"

# Mark a phase as completed
cursor-rules complete-phase "Project Setup and Environment Configuration"
  • start-phase: Generates a detailed Phase_X_Implementation_Plan.md and the Current_Phase_Focus.mdc rule.
  • complete-phase: Updates checkboxes in action_items.md, updates development_log.md, removes Current_Phase_Focus.mdc.

(Note: The automatic updating of checkboxes in action_items.md relies on parsing the Markdown file generated by the LLM. Verify its accuracy after running complete-phase.)

LLM Configuration

Configure API keys for LLM providers (required for document generation and phase management features).

# Set up OpenAI API key
cursor-rules llm config --provider openai --api-key YOUR_OPENAI_KEY

# Set up Anthropic API key
cursor-rules llm config --provider anthropic --api-key YOUR_ANTHROPIC_KEY

# List configured providers where keys are stored
cursor-rules llm list

# Test connectivity to configured providers
cursor-rules llm test

Alternatively, use environment variables (OPENAI_API_KEY, ANTHROPIC_API_KEY).

Features Summary

  • LLM-Powered Document Generation: Creates PRD, Tech Stack, Action Items (MD & JSON attempt), Dev Log, and optional docs from an initialization file.
  • Context-Aware Rule Generation: Creates .cursor/rules/ with foundational and tech-specific rules using LLM, based on project context.
  • YAML Front Matter Rules: Supports the modern .mdc format with description, globs, alwaysApply.
  • Phase Management CLI: start-phase and complete-phase commands to structure workflow.
  • Dynamic AI Focus: Automatically generates/removes an alwaysApply: true rule (Current_Phase_Focus.mdc) to guide the AI based on the active development phase.
  • Action Item Checklists: Generates action_items.md with interactive Markdown checkboxes.
  • LLM Configuration: Easy CLI commands to set up and test API keys.

License

MIT

Features

  • Parse rules from Markdown, YAML, and JSON formats
  • Prioritize and tag rules for contextual application
  • Validate rule sets to ensure correctness
  • Apply rules within AI assistant workflows
  • Generate .cursorrules files for Cursor IDE integration
  • Extract and track tasks from project initialization documents
  • Generate complete documentation suites from initialization documents
  • Beautiful, interactive CLI with progress indicators and visual feedback
  • Simple and elegant API
  • Integration with LLM providers (OpenAI, Anthropic)

Rule Management

Markdown Format

# My Rules

Rules for my AI assistant

## Be Concise

Keep responses short and to the point.

## Use Examples

Provide concrete examples when explaining concepts.

YAML

name: My Rules
description: Rules for my AI assistant
rules:
  - id: be_concise
    content: Keep responses short and to the point.
    priority: 10
    tags: [style]
  - id: use_examples
    content: Provide concrete examples when explaining concepts.
    priority: 5
    tags: [teaching]

Task Tracking

Cursor Rules can extract and manage tasks from project initialization documents:

from cursor_rules import extract_action_plan_from_doc, synchronize_with_cursorrules

# Extract tasks from a markdown project document
action_plan = extract_action_plan_from_doc("project_init.md")

# List tasks by phase
for phase in action_plan.phases:
    print(f"Phase: {phase.title}")
    for task in phase.tasks:
        print(f"- {task.title} [Status: {task.status.name}]")

# Update task status
task = action_plan.get_task_by_id("task_id")
if task:
    task.status = TaskStatus.COMPLETED

# Save the action plan to a file
action_plan.save_to_file("project_tasks.json")

# Load an action plan from a file
loaded_plan = ActionPlan.load_from_file("project_tasks.json")

# Sync with a ruleset
ruleset = RuleSet.load("project_rules.json")
synchronize_with_cursorrules(action_plan, ruleset)

Command Line Interface

You can also manage tasks from the command line:

# Generate an action plan from a markdown file
cursor-tasks generate project_init.md -o project_tasks.json

# List all tasks
cursor-tasks list -f project_tasks.json

# List tasks by phase
cursor-tasks list -f project_tasks.json -p "Backend Development"

# Update task status
cursor-tasks update -f project_tasks.json -t task_id -s completed

# Sync with a ruleset
cursor-tasks sync -f project_tasks.json -r project_rules.json

Document Generation

Cursor Rules can generate a complete set of project documentation from a single initialization document:

from cursor_rules import DocumentGenerator

# Create a document generator
generator = DocumentGenerator("project_init.md")

# Generate all documents
generated_files = generator.generate_all_documents()

# Print the paths to generated files
for doc_name, file_path in generated_files.items():
    print(f"{doc_name}: {file_path}")

The generated documentation includes:

  • Product Requirements Document (PRD): Contains project vision, target users, user stories, and requirements
  • Technical Stack Document: Details the technology stack, architecture, and development environment based on the PRD
  • .cursorrules file: Provides project-specific rules for Cursor IDE derived from the PRD
  • Action Items: Structured development tasks organized by implementation phases

Document Generation Architecture

Cursor Rules uses a strict PRD-centric document generation approach:

  • The initialization document is first parsed to create a comprehensive PRD
  • The PRD then becomes the single source of truth for all other documents
  • Action items are generated exclusively from the PRD, never from the initialization document
  • The generation process requires LLM capabilities and will fail explicitly rather than using fallbacks
  • All tasks and subtasks represent actual development work, organized by implementation phases
  • This strict sequential workflow ensures consistency across all project documentation

Dynamic Rules

Cursor Rules includes a powerful dynamic rules system that automatically adapts to your project's changing state:

from cursor_rules import DynamicRuleManager, ProjectState, ProjectPhase, Component

# Create a project state
project_state = ProjectState(
    name="My Project",
    description="A dynamic project",
    phase=ProjectPhase.SETUP,
    tech_stack={"frontend": ["React"], "backend": ["Node.js"]}
)

# Create a dynamic rule manager
rule_manager = DynamicRuleManager("/path/to/project", project_state)

# Generate rules based on current project state
rule_files = rule_manager.generate_dynamic_rules()

# Update the project state as development progresses
rule_manager.update_project_state(
    phase=ProjectPhase.FEATURE_DEVELOPMENT,
    active_features=["authentication", "dashboard"]
)

# Regenerate rules to reflect the new state
updated_rule_files = rule_manager.generate_dynamic_rules()

Key Features of Dynamic Rules

  • Project State Tracking: Monitors project phase, active features, components, and tech stack
  • Adaptive Rule Generation: Creates different rule sets based on the current project state
  • Code Change Detection: Automatically detects changes in the codebase and updates rules accordingly
  • Phase-Specific Rules: Different rules for different project phases (setup, development, refinement, etc.)
  • Rule Versioning: Maintains history of previous rule versions for reference and rollback
  • Component-Aware Rules: Generates specific rules for different components of your application

Command Line Interface

# Update project state and regenerate rules
cursor-rules update-rules --phase feature_development --features "auth,dashboard"

# View current project state
cursor-rules state

# Force regeneration of all rules
cursor-rules update-rules --force

Command Line Interface

Generate documents with a beautiful, interactive interface:

# Generate all documentation from an initialization document
cursor-rules documents project_init.md

This creates:

  • A .cursor directory at the root with the .cursorrules file
  • A documentation directory with all project documents (PRD, Technical Stack, Tasks)
  • A development-log.md file to track changes

License

MIT

Examples

The package includes several example scripts to demonstrate its functionality:

# Complete workflow example demonstrating all features
python examples/complete_workflow_example.py

# Document generation from initialization document
python examples/document_generation_example.py

# Task manager example
python examples/task_manager_example.py

# Rule generation example
python examples/rule_generation_example.py

These examples demonstrate key features like:

  • Generating .cursorrules files from markdown documents
  • Creating complete documentation suites (PRD, Technical Stack, Tasks)
  • Extracting and managing tasks
  • Versioning .cursorrules files
  • Monitoring codebase changes
  • Working with LLM providers

API Key Configuration

For features that use LLM integration, you need to configure your API keys:

# Set up OpenAI API key
cursor-rules llm config --provider openai --api-key your_key_here

# Set up Anthropic API key
cursor-rules llm config --provider anthropic --api-key your_key_here

# List configured providers
cursor-rules llm list

# Test your configuration
cursor-rules llm test

You can also use environment variables:

# Linux/macOS
export OPENAI_API_KEY=your_key_here
export ANTHROPIC_API_KEY=your_key_here

# Windows PowerShell
$env:OPENAI_API_KEY = "your_key_here"
$env:ANTHROPIC_API_KEY = "your_key_here"

For detailed instructions, see the API Key Setup Guide.

Keywords

cursor

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts