Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
This project helps to connect to our data warehouse.
3.8.x
or later.Synchronize tags from PI server to Data warehouse on period [01/01/2022 05:00:00 - 31/01/2022 05:00:00]
can be easily achieved by the code below:
from datetime import datetime
from edv_dwh_connector.pg_dwh import PgDwh
from edv_dwh_connector.pi_web_api_client import PiWebAPIClient
from edv_dwh_connector.pi.rest.rest_sync_pi_tags import RestSyncPITags
from edv_dwh_connector.utils.periods import HourIntervals
from edv_dwh_connector.pi.sync_pi_data import SyncPIDataRestToDwh
from edv_dwh_connector.pi.db.pg_pi_tag import PgPITags
# We should firstly declare the Data warehouse pool connection.
dwh = PgDwh.from_connection(
name="dwh_db_name", host="dwh_server_name_or_ip",
user="dwh_user", password="dwh_password", port=5432
)
# Next, we should declare the PI server REST API client.
client = PiWebAPIClient(
base_url="base/url/of/pi/server", username="admin_user",
password="admin_password", session_timeout=2.5
)
# Finally, we can synchronize tags measures.
# The code below will automatically synchronize tags (create new tags),
# split period provided into hour intervals and synchronize PI measures
# on these intervals.
SyncPIDataRestToDwh(
tags=RestSyncPITags(
server_id="F1DSmN2338899MpX8PREOtdbEZ56sypOOOKRZLVNSVi1QSS1ISTGt", # Fake server ID
client=client,
codes=['AI162003_SCLD', 'AI162007_SCLD', 'AI162014_SCLD'],
target=PgPITags(dwh)
),
periods=HourIntervals(
datetime(2022, 1, 1, 5, 0, 0), datetime(2022, 1, 31, 5, 0, 0)
),
client=client, dwh=dwh
).synchronize()
To store data to a CSV file in fact_pi_measure
format, you could do this:
SyncPIDataRestToCSVDwhLike(
tags=RestSyncPITags(
server_id="F1DSmN2338899MpX8PREOtdbEZ56sypOOOKRZLVNSVi1QSS1ISTGt", # Fake server ID
client=client,
codes=['AI162003_SCLD', 'AI162007_SCLD', 'AI162014_SCLD'],
target=PgPITags(dwh)
),
periods=HourIntervals(
datetime(2022, 1, 1, 5, 0, 0), datetime(2022, 1, 31, 5, 0, 0)
),
client=client,
file="path/of/csv/file/where/to/store"
).synchronize()
after importing SyncPIDataRestToCSVDwhLike
from edv_dwh_connector.pi.sync_pi_data
.
It is very useful when you want to recover data of DWH table fact_pi_measure
on a long period.
N.B. You could also fetch on day intervals by using class DayIntervals
instead of HourIntervals
.
But, HourIntervals
could be faster than DayIntervals
depending on the size of data to be imported.
To synchronize a CSV file with the latest data from interpolated data from DWH, we do like this:
dwh = ...
tag = "AI56222_SCDL"
CsvWithLatestPIMeasuresDf(
path="my/path/data.csv",
tag=tag,
origin=PgMinuteInterpolatedPIMeasuresDf(tag, dwh)
).frame(
datetime(2022, 1, 1, 5, 0, 0), datetime(2022, 1, 31, 5, 0, 0)
)
If data.csv
contains data for period [01/01/2022 - 24/01/2022]
, this instruction will only add to the CSV file data of the last week.
To get all tags, just do this:
tags = PgCachedPITags(dwh).items()
To read measures of a tag on a period, just do this:
tag = ... # get PI tag here
measures = PgCachedPIMeasures(tag, dwh).items(
datetime(2022, 1, 1, 5, 0, 0), datetime(2022, 1, 31, 5, 0, 0)
)
# or use only tag code
measures = PgCachedPIMeasures("AI162014_SCLD", dwh).items(
datetime(2022, 1, 1, 5, 0, 0), datetime(2022, 1, 31, 5, 0, 0)
)
# or use a data frame (by tag or tag code)
dt = PgPIMeasuresDf(tag, dwh).frame(
datetime(2022, 1, 1, 5, 0, 0), datetime(2022, 1, 31, 5, 0, 0)
)
We easily synchronize by this code below:
SyncBlendProposals(
src=ExcelBlendProposals(
file="path/of/excel/file/name",
start_date=date.fromisoformat("2022-10-18"),
end_date=date.fromisoformat("2022-10-20")
),
target=PgBlendProposals(dwh)
).synchronize()
blends = PgBlendProposals(dwh).items(
date(2022, 10, 18), datetime(2022, 10, 20)
)
It is recommended to start by creating a virtual environment. You could do it by following commands:
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
N.B. We activate an environment on Windows by executing:
.venv\Scripts\activate.bat
Please read contributing rules.
Fork repository, make changes, send us a pull request. We will review
your changes and apply them to the master
branch shortly, provided
they don't violate our quality standards. To avoid frustration, before
sending us your pull request please run these commands:
sh pyqulice.sh # Linux
pyqulice.bat # Windows
pytest tests/unit/
FAQs
This module helps to connect to our data warehouse
We found that edv-dwh-connector demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.