
Research
2025 Report: Destructive Malware in Open Source Packages
Destructive malware is rising across open source registries, using delays and kill switches to wipe code, break builds, and disrupt CI/CD.
exp-heatmap
Advanced tools
A powerful Python package and command-line tool for visualizing multidimensional population genetics data through intuitive heatmaps.
ExP Heatmap specializes in displaying cross-population data, including differences, similarities, p-values, and other statistical parameters between multiple groups or populations. This tool enables efficient evaluation of millions of statistical values in a single, comprehensive visualization.
ExP heatmap of the human lactose (LCT) gene showing population differences between 26 populations from the 1000 Genomes Project, displaying adjusted rank p-values for cross-population extended haplotype homozygosity (XPEHH) selection test. Create your own LCT heatmap with the Quick Start Guide
Developed by the Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic
vcftools (for genomic data preparation - optional if using preprocessed data)pip install exp_heatmap
pip install git+https://github.com/bioinfocz/exp_heatmap.git
Get started with ExP Heatmap in three simple steps:
Step 1: Download the prepared results of the extended haplotype homozygosity (XPEHH) selection test for the part of human chromosome 2, 1000 Genomes Project data either directly via Zenodo or via command:
wget "https://zenodo.org/records/16364351/files/chr2_output.tar.gz"
Step 2: Decompress the downloaded folder in your working directory:
tar -xzf chr2_output.tar.gz
Step 3: Run the exp_heatmap plot command:
exp_heatmap plot chr2_output/ --start 136108646 --end 137108646 --title "LCT gene" --output LCT_xpehh
The exp_heatmap package will read the files from chr2_output/ folder and create the ExP heatmap and save it as LCT_xpehh.png file.
ExP Heatmap follows a simple three-step workflow: prepare → compute → plot. Each step can be used independently depending on your data format.
prepareConvert VCF files to efficient Zarr format for faster computation.
exp_heatmap prepare [OPTIONS] <vcf_file>
<vcf_file> [PATH]: Recoded VCF file-o, --output [PATH]: Directory for output filescomputeCalculate population genetic statistics across all genomic positions.
exp_heatmap compute [OPTIONS] <zarr_dir> <panel_file>
<zarr_dir> [PATH]: Directory with ZARR files from prepare step
<panel_file>[PATH]: Population panel file
-o, --output: Directory for output files-t, --test: Statistical test to compute
xpehh: Cross-population Extended Haplotype Homozygosity (default)xpnsl: Cross-population Number of Segregating sites by Lengthdelta_tajima_d: Delta Tajima's Dhudson_fst: Hudson's Fst genetic distance-c, --chunked: Use chunked array to avoid memory exhaustionplotGenerate heatmap visualizations from computed statistics.
exp_heatmap plot [OPTIONS] <input_dir>
<input_dir>: Directory with TSV files from compute step-s, --start & -e, --end: Genomic coordinates for the region to display. Uses nearest available position if exact match not found in the input data.-m, --mid: Alternative way to specify region. The start and end positions will be calculated (mid ± 500 kb)-t, --title: Title of the heatmap-o, -output: Output filename (without .png extension)-c, --cmap: Matplotlib colormap - list of colormapsThe Python API offers more flexibility and customization options. Choose the appropriate scenario based on your data format:
Use when: You have pre-computed p-values in a TSV file.
Data format: TSV file with columns: CHROM, POS, followed by pairwise p-value columns for population comparisons.
from exp_heatmap.plot import plot_exp_heatmap
import pandas as pd
# Load your p-values data
data = pd.read_csv("pvalues.tsv", sep="\t")
# Create heatmap
plot_exp_heatmap(
data,
begin=135287850,
end=136287850,
title="Population Differences in LCT Gene",
cmap="Blues",
output="lct_analysis",
populations="1000Genomes" # Predefined population set
)
Use when: You have computed statistical test results that need conversion to p-values.
from exp_heatmap.plot import plot_exp_heatmap, create_plot_input
# Convert statistical results to ranked p-values
data_to_plot = create_plot_input(
"results_directory/", # Directory with test results
begin=135287850,
end=136287850,
populations="1000Genomes",
rank_pvalues="2-tailed" # Options: "2-tailed", "ascending", "descending"
)
# Create heatmap
plot_exp_heatmap(
data_to_plot,
begin=135287850,
end=136287850,
title="XP-NSL Test Results",
cmap="expheatmap", # Custom ExP colormap
output="xpnsl_results"
)
Use when: Starting from raw VCF files. Combine CLI commands with Python plotting:
import subprocess
from exp_heatmap.plot import plot_exp_heatmap, create_plot_input
# 1. Prepare data (using CLI)
subprocess.run(["exp_heatmap", "prepare", "data_snps.recode.vcf", "data.zarr"])
# 2. Compute statistics (using CLI)
subprocess.run(["exp_heatmap", "compute", "data.zarr", "populations.panel", "results/"])
# 3. Create custom plots (using Python)
data_to_plot = create_plot_input("results/", begin=47000000, end=49000000)
plot_exp_heatmap(data_to_plot, begin=47000000, end=49000000,
title="Custom Analysis", output="custom_plot")
Fine-tune your visualizations with advanced options:
from exp_heatmap.plot import plot_exp_heatmap, prepare_cbar_params, superpopulations
# Custom colorbar settings
cmin, cmax, cbar_ticks = prepare_cbar_params(data_to_plot, n_cbar_ticks=6)
# Advanced plot with multiple customizations
plot_exp_heatmap(
data_to_plot,
begin=135000000,
end=137000000,
title="Selection Signals in African Populations",
# Population filtering
populations=superpopulations["AFR"], # Focus on African populations
# Available: ["AFR", "AMR", "EAS", "EUR", "SAS"] or custom list
# Visual customizations
cmap="expheatmap", # Custom ExP colormap
display_limit=1.60, # Filter noise (values below limit = white)
display_values="higher", # Show values above display_limit
# Annotations
vertical_line=[ # Mark important SNPs
[135851073, "rs41525747"], # [position, label]
[135851081, "rs41380347"]
],
# Colorbar customization
cbar_vmin=cmin,
cbar_vmax=cmax,
cbar_ticks=cbar_ticks,
# Output
output="african_populations_analysis",
xlabel="Custom region description"
)
This example demonstrates a full workflow analyzing the SLC24A5 gene, known for its role in human skin pigmentation using 1000 Genomes Project data. SLC24A5 is also known to show strong selection signals, which makes it a suitable example.
#!/bin/bash
# Download 1000 Genomes data
wget "ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr15.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz" -O chr15.vcf.gz
wget "ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel" -O genotypes.panel
# Filter to SNPs only
vcftools --gzvcf chr15.vcf.gz \
--remove-indels \
--recode \
--recode-INFO-all \
--out chr15_snps
# Prepare data
exp_heatmap prepare chr15_snps.recode.vcf chr15_snps.recode.zarr
# Compute statistics
exp_heatmap compute chr15_snps.recode.zarr genotypes.panel chr15_snps_output
# Generate heatmap for SLC24A5 region
exp_heatmap plot chr15_snps_output \
--begin 47924019 \
--end 48924019 \
--title "SLC24A5" \
--cmap gist_heat \
--out SLC24A5_heatmap
The same XP-EHH test data for the ADM2 gene region, showing different p-value calculation methods:
Two-tailed p-values:

Ascending p-values:

Descending p-values:

Using display_limit and display_values parameters to filter noisy data and highlight significant regions:
Same data as above, but with display_limit=1.60 to filter noise and highlight significant signals.
We welcome contributions! Feel free to contact us or submit issues or pull requests.
git clone https://github.com/bioinfocz/exp_heatmap.git
cd exp_heatmap
pip install -e .
This project is licensed under Custom Non-Commercial License based on the MIT License - see the LICENSE file for details.
For commercial licensing under different terms, please contact: edvard.ehler@img.cas.cz
If you use ExP Heatmap in your research, please cite our paper [citation details will be added upon publication].
FAQs
Computing and drawing ExP heatmap for displaying complex cross-population data
We found that exp-heatmap demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Research
Destructive malware is rising across open source registries, using delays and kill switches to wipe code, break builds, and disrupt CI/CD.

Security News
Socket CTO Ahmad Nassri shares practical AI coding techniques, tools, and team workflows, plus what still feels noisy and why shipping remains human-led.

Research
/Security News
A five-month operation turned 27 npm packages into durable hosting for browser-run lures that mimic document-sharing portals and Microsoft sign-in, targeting 25 organizations across manufacturing, industrial automation, plastics, and healthcare for credential theft.