Latest Threat Research:SANDWORM_MODE: Shai-Hulud-Style npm Worm Hijacks CI Workflows and Poisons AI Toolchains.Details
Socket
Book a DemoInstallSign in
Socket

extr-ds

Package Overview
Dependencies
Maintainers
1
Versions
85
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

extr-ds

Library to quickly build basic datasets for Named Entity Recognition (NER) and Relation Extraction (RE) Machine Learning tasks.

pipPyPI
Version
0.0.86
Maintainers
1

extr-ds

Library to programmatically build labeled datasets for Named-Entity Recognition (NER) and Relation Extraction (RE) Machine Learning tasks.


Install

pip install extr-ds

Command Line

see Instructions on how to use the command line utility to manage your project.

1. Init Project

extr-ds --init

2. Split and Annotate

extr-ds --split

3.a Annotate Entities or Relations Again?

extr-ds --annotate -ents
extr-ds --annotate -rels

3.b Change Relation Extraction Label

extr-ds --relate -label NO_RELATION=5,7,9

3.b Remove Relation Extraction Instance

extr-ds --relate -delete 5,6,7

3.c Recover removed Relation Extraction Instances

extr-ds --relate -recover 5,6,7

4. Save

extr-ds --save -ents
extr-ds --save -rels

5. Reset "Gold Standard" datasets

extr-ds --reset

6. Help!?

extr-ds --help

API

Example

text = 'Ted Johnson is a pitcher.'

1. Label Entities for Named-Entity Recognition Task (NER)

from extr import RegEx, RegExLabel
from extr.entities import EntityExtactor
from extr_ds.labelers import IOB

entity_extractor = EntityExtactor([
    RegExLabel('PERSON', [
        RegEx([r'(ted\s+johnson|ted)'], re.IGNORECASE)
    ]),
    RegExLabel('POSITION', [
        RegEx([r'pitcher'], re.IGNORECASE)
    ]),
])

sentence_tokenizer = ## 3rd party tokenizer ##
label = IOB(sentence_tokenizer, entity_extractor).label(text)

## label == <Label tokens=..., labels=['B-PERSON', 'I-PERSON', 'O', 'O', 'B-POSITION', 'O']>

2. Annotate for Relation Extraction Task (RE)

from extr.entities import EntityExtractor
from extr.relations import RegExRelationLabelBuilder, \
                           RelationExtractor
from extr_ds.labelers import RelationClassification
from extr_ds.labelers.relation import RelationBuilder, BaseRelationLabeler, RuleBasedRelationLabeler


person_to_position_relationship = RegExRelationLabelBuilder('is_a') \
    .add_e1_to_e2(
        'PERSON',
        [
            r'\s+is\s+a\s+',
        ],
        'POSITION'
    ) \
    .build()

base_relation_labeler = BaseRelationLabeler(
    RelationBuilder(relation_formats=[
        ('PERSON', 'POSITION', 'NO_RELATION')
    ])
)

rule_based_relation_labeler = RuleBasedRelationLabeler(
    RelationExtractor([person_to_position_relationship])
)

labeler = RelationClassification(
    EntityExtractor([
        RegExLabel('PERSON', [
            RegEx([r'(ted johnson|bob)'], re.IGNORECASE)
        ]),
        RegExLabel('POSITION', [
            RegEx([r'pitcher'], re.IGNORECASE)
        ]),
    ]),
    base_relation_labeler,
    relation_labelers=[
        rule_based_relation_labeler
    ]
)

results = labeler.label(text)

## results.relation_labels == [
##    <RelationLabel sentence="<e1>Ted Johnson</e1> is a <e2>pitcher</e2>." label="is_a">
## ]

3. Find and define the type of difference between labels

from extr_ds.validators import check_for_differences

differences_in_labels = check_for_differences(
    ['B-PERSON', 'I-PERSON', 'O', 'O', 'B-POSITION', 'O'],
    ['B-PERSON', 'O', 'O', 'O', 'B-POSITION', 'O']
)

## differences_in_labels.has_diffs == True
## differences_in_labels.diffs_between_labels == [
##      <Difference index=1, diff_type=DifferenceTypes.S2_MISSING>
## ]

differences_in_labels = check_for_differences(
    ['B-PERSON', 'I-PERSON', 'O', 'O', 'B-POSITION', 'O'],
    ['B-PERSON', 'B-PERSON', 'O', 'O', 'B-POSITION', 'O']
)

## differences_in_labels.has_diffs == True
## differences_in_labels.diffs_between_labels == [
##      <Difference index=1, diff_type=DifferenceTypes.MISMATCH>
## ]

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts