Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

fast-bss-eval

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

fast-bss-eval

Package for fast computation of BSS Eval metrics for source separation

  • 0.1.4
  • Source
  • PyPI
  • Socket score

Maintainers
1

fast_bss_eval

PyPI version Documentation Status black tests codecov

Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ?

Fear no more! fast_bss_eval is here to help you!

fast_bss_eval is a fast implementation of the bss_eval metrics for the evaluation of blind source separation. Our implementation of the bss_eval metrics has the following advantages compared to other existing ones.

  • seamlessly works with both numpy arrays and pytorch tensors
  • very fast
  • can be even faster by using an iterative solver (add use_cg_iter=10 option to the function call)
  • differentiable via pytorch
  • can run on GPU via pytorch

Author

Quick Start

Install

# from pypi
pip install fast-bss-eval

# or from source
git clone https://github.com/fakufaku/fast_bss_eval
cd fast_bss_eval
pip install -e .

Use

Assuming you have multichannel signals for the estmated and reference sources stored in wav format files names my_estimate_file.wav and my_reference_file.wav, respectively, you can quickly evaluate the bss_eval metrics as follows.

from scipy.io import wavfile
import fast_bss_eval

# open the files, we assume the sampling rate is known
# to be the same
fs, ref = wavfile.read("my_reference_file.wav")
_, est = wavfile.read("my_estimate_file.wav")

# compute the metrics
sdr, sir, sar, perm = fast_bss_eval.bss_eval_sources(ref.T, est.T)

Benchmark

This package is significantly faster than other packages that also allow to compute bss_eval metrics such as mir_eval or sigsep/bsseval. We did a benchmark using numpy/torch, single/double precision floating point arithmetic (fp32/fp64), and using either Gaussian elimination or a conjugate gradient descent (solve/CGD10).

Citation

If you use this package in your own research, please cite our paper describing it.

@misc{scheibler_sdr_2021,
  title={SDR --- Medium Rare with Fast Computations},
  author={Robin Scheibler},
  year={2021},
  eprint={2110.06440},
  archivePrefix={arXiv},
  primaryClass={eess.AS}
}

License

2021 (c) Robin Scheibler, LINE Corporation

All of this code is released under MIT License with the exception of fast_bss_eval/torch/hungarian.py which is under 3-clause BSD License.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc