
Research
/Security News
Toptal’s GitHub Organization Hijacked: 10 Malicious Packages Published
Threat actors hijacked Toptal’s GitHub org, publishing npm packages with malicious payloads that steal tokens and attempt to wipe victim systems.
Version: 1.1.8
Pythonic GitLab API Library
Includes a large portion of useful API calls to GitLab and SQLAlchemy Models to handle loading API calls directly to a database!
This repository is actively maintained - Contributions are welcome!
Additional Features:
If your API call isn't supported, you can always run the standard custom API endpoint function to get/post/put/delete and endpoint
Using the API directly
#!/usr/bin/python
import gitlab_api
from gitlab_api import pydantic_to_sqlalchemy, upsert, save_model, load_model
from gitlab_api.gitlab_db_models import (
BaseDBModel as Base,
)
import urllib3
import os
from urllib.parse import quote_plus
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
gitlab_token = os.environ["GITLAB_TOKEN"]
postgres_username = os.environ["POSTGRES_USERNAME"]
postgres_password = os.environ["POSTGRES_PASSWORD"]
postgres_db_host = os.environ["POSTGRES_DB_HOST"]
postgres_port = os.environ["POSTGRES_PORT"]
postgres_db_name = os.environ["POSTGRES_DB_NAME"]
if __name__ == "__main__":
print("Creating GitLab Client...")
client = gitlab_api.Api(
url="http://gitlab.arpa/api/v4/",
token=gitlab_token,
verify=False,
)
print("GitLab Client Created\n\n")
print("\nFetching User Data...")
user_response = client.get_users(active=True, humans=True)
print(
f"Users ({len(user_response.data)}) Fetched - "
f"Status: {user_response.status_code}\n"
)
print("\nFetching Namespace Data...")
namespace_response = client.get_namespaces()
print(
f"Namespaces ({len(namespace_response.data)}) Fetched - "
f"Status: {namespace_response.status_code}\n"
)
print("\nFetching Project Data...")
project_response = client.get_nested_projects_by_group(group_id=2, per_page=100)
print(
f"Projects ({len(project_response.data)}) Fetched - "
f"Status: {project_response.status_code}\n"
)
print("\nFetching Merge Request Data...")
merge_request_response = client.get_group_merge_requests(
argument="state=all", group_id=2
)
print(
f"\nMerge Requests ({len(merge_request_response.data)}) Fetched - "
f"Status: {merge_request_response.status_code}\n"
)
# Pipeline Jobs table
pipeline_job_response = None
for project in project_response.data:
job_response = client.get_project_jobs(project_id=project.id)
if (
not pipeline_job_response
and hasattr(job_response, "data")
and len(job_response.data) > 0
):
pipeline_job_response = job_response
elif (
pipeline_job_response
and hasattr(job_response, "data")
and len(job_response.data) > 0
):
pipeline_job_response.data.extend(job_response.data)
print(
f"Pipeline Jobs ({len(getattr(pipeline_job_response, 'data', []))}) "
f"Fetched for Project ({project.id}) - "
f"Status: {pipeline_job_response.status_code}\n"
)
print("Saving Pydantic Models...")
user_file = save_model(model=user_response, file_name="user_model", file_path=".")
namespace_file = save_model(
model=namespace_response, file_name="namespace_model", file_path="."
)
project_file = save_model(
model=project_response, file_name="project_model", file_path="."
)
merge_request_file = save_model(
model=merge_request_response, file_name="merge_request_model", file_path="."
)
pipeline_job_file = save_model(
model=pipeline_job_response, file_name="pipeline_job_model", file_path="."
)
print("Models Saved")
print("Loading Pydantic Models...")
user_response = load_model(file=user_file)
namespace_response = load_model(file=namespace_file)
project_response = load_model(file=project_file)
merge_request_response = load_model(file=merge_request_file)
pipeline_job_response = load_model(file=pipeline_job_file)
print("Models Loaded")
print("Converting Pydantic to SQLAlchemy model...")
user_db_model = pydantic_to_sqlalchemy(schema=user_response)
print(f"Database Models: {user_db_model}\n")
print("Converting Pydantic to SQLAlchemy model...")
namespace_db_model = pydantic_to_sqlalchemy(schema=namespace_response)
print(f"Database Models: {namespace_db_model}\n")
print("Converting Pydantic to SQLAlchemy model...")
project_db_model = pydantic_to_sqlalchemy(schema=project_response)
print(f"Database Models: {project_db_model}\n")
print("Converting Pydantic to SQLAlchemy model...")
merge_request_db_model = pydantic_to_sqlalchemy(schema=merge_request_response)
print(f"Database Models: {merge_request_db_model}\n")
print("Converting Pydantic to SQLAlchemy model...")
pipeline_db_model = pydantic_to_sqlalchemy(schema=pipeline_job_response)
print(f"Database Models: {pipeline_db_model}\n")
print("Creating Engine")
engine = create_engine(
f"postgresql://{postgres_username}:{quote_plus(postgres_password)}@"
f"{postgres_db_host}:{postgres_port}/{postgres_db_name}"
)
print("Engine Created\n\n")
print("Creating Tables...")
Base.metadata.create_all(engine)
print("Tables Created\n\n")
print("Creating Session...")
Session = sessionmaker(bind=engine)
session = Session()
print("Session Created\n\n")
print(f"Inserting ({len(user_response.data)}) Users Into Database...")
upsert(session=session, model=user_db_model)
print("Users Synchronization Complete!\n")
print(f"Inserting ({len(namespace_response.data)}) Namespaces Into Database...")
upsert(session=session, model=namespace_db_model)
print("Namespaces Synchronization Complete!\n")
print(f"Inserting ({len(project_response.data)}) Projects Into Database...\n")
upsert(session=session, model=project_db_model)
print("Projects Synchronization Complete!\n")
print(
f"Inserting ({len(merge_request_response.data)}) Merge Requests Into Database..."
)
upsert(session=session, model=merge_request_db_model)
print("Merge Request Synchronization Complete!\n")
print(
f"Inserting ({len(pipeline_job_response.data)}) Pipeline Jobs Into Database..."
)
upsert(session=session, model=pipeline_db_model)
print("Pipeline Jobs Synchronization Complete!\n")
session.close()
print("Session Closed")
Install Python Package
python -m pip install gitlab-api
pre-commit check
pre-commit run --all-files
pytest
python -m pip install -r test-requirements.txt
pytest ./test/test_gitlab_models.py
Full pytests
rm -rf ./dist/* \
&& python setup.py bdist_wheel --universal \
&& python -m pip uninstall gitlab-api -y \
&& python -m pip install ./dist/*.whl \
&& pytest -vv ./test/test_gitlab_models.py \
&& pytest -vv ./test/test_gitlab_db_models.py \
&& python ./test/test_sqlalchemy.py
FAQs
GitLab API Python Wrapper
We found that gitlab-api demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
/Security News
Threat actors hijacked Toptal’s GitHub org, publishing npm packages with malicious payloads that steal tokens and attempt to wipe victim systems.
Research
/Security News
Socket researchers investigate 4 malicious npm and PyPI packages with 56,000+ downloads that install surveillance malware.
Security News
The ongoing npm phishing campaign escalates as attackers hijack the popular 'is' package, embedding malware in multiple versions.