Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

gradient-utils

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

gradient-utils

This is an SDK for performing Machine Learning with Gradient.

  • 0.5.0
  • PyPI
  • Socket score

Maintainers
1

GitHubSplash

Gradient Utils

PyPI codecov


Get started: Create AccountInstall CLITutorialsDocs

Resources: WebsiteBlogSupportContact Sales


Gradient is an an end-to-end MLOps platform that enables individuals and organizations to quickly develop, train, and deploy Deep Learning models. The Gradient software stack runs on any infrastructure e.g. AWS, GCP, on-premise and low-cost Paperspace GPUs. Leverage automatic versioning, distributed training, built-in graphs & metrics, hyperparameter search, GradientCI, 1-click Jupyter Notebooks, our Python SDK, and more.

This is an SDK for performing Machine Learning with Gradientº, it can be installed in addition to gradient-cli.

Requirements

This SDK requires Python 3.6+.

To install it, run:

pip install gradient-utils

Usage

Metrics

Library for logging custom and framework metrics in Gradient.

Usage example:

from gradient_utils.metrics import init, add_metrics, MetricsLogger

# Initialize metrics logging
with init():
    # do work here
    pass

# Capture metrics produced by tensorboard
with init(sync_tensorboard=True):
    # do work here
    pass

# Log metrics with a single command
add_metrics({"loss": 0.25, "accuracy": 0.99})

# Insert metrics with a step value
# Note: add_metrics should be called once for a step.
#       Multiple calls with the same step may result in loss of metrics.
add_metrics({"loss": 0.25, "accuracy": 0.99}, step=0)

# For more advanced use cases use the MetricsLogger
logger = MetricsLogger()
logger.add_gauge("loss") # add a specific gauge
logger["loss"].set(0.25)
logger["loss"].inc()
logger.add_gauge("accuracy")
logger["accuracy"].set(0.99)
logger.push_metrics() # you must explicitly push metrics each time you mutate values when using MetricsLogger

# You can also use steps with the MetricsLogger
logger = MetricsLogger(step=0)
logger.add_gauge("loss")
logger["loss"].set(0.25)
logger.push_metrics()
logger.set_step(1) # update step explicitly
logger["loss"].set(0.25)
logger.push_metrics()

Multinode Helper Functions

Multinode GRPC Tensorflow

Set the TF_CONFIG environment variable For multi-worker training, you need to set the TF_CONFIG environment variable for each binary running in your cluster. Set the value of TF_CONFIG to a JSON string that specifies each task within the cluster, including each task's address and role within the cluster. We've provided a Kubernetes template in the tensorflow/ecosystem repo which sets TF_CONFIG for your training tasks.

get_tf_config()

Function to set value of TF_CONFIG when run on machines within Paperspace infrastructure.

It can raise a ConfigError exception with message if there's a problem with its configuration in a particular machine.

Usage example:

from gradient_utils import get_tf_config

get_tf_config()

Utility Functions

get_mongo_conn_str()

Function to check and construct MongoDB connection string.

It returns a connection string to MongoDB.

It can raise a ConfigError exception with message if there's a problem with any values used to prepare the MongoDB connection string.

Usage example:

from gradient_utils import get_mongo_conn_str

conn_str = get_mongo_conn_str()

data_dir()

Function to retrieve path to job space.

Usage example:

from gradient_utils import data_dir

job_space = data_dir()

model_dir()

Function to retrieve path to model space.

Usage example:

from gradient_utils import model_dir

model_path = model_dir(model_name)

export_dir()

Function to retrieve path for model export.

Usage example:

from gradient_utils import export_dir

model_path = export_dir(model_name)

worker_hosts()

Function to retrieve information about worker hosts.

Usage example:

from gradient_utils import worker_hosts

model_path = worker_hosts()

ps_hosts()

Function to retrieve information about Paperspace hosts.

Usage example:

from gradient_utils import ps_hosts

model_path = ps_hosts()

task_index()

Function to retrieve information about task index.

Usage example:

from gradient_utils import task_index

model_path = task_index()

job_name()

Function to retrieve information about job name.

Usage example:

from gradient_utils import job_name

model_path = job_name()

Contributing

Setup

We use Docker and Docker-compose to run the tests locally.

# To setup the integration test framework
docker-compose up --remove-orphans -d pushgateway
docker-compose build utils

# To run tests
docker-compose -f docker-compose.ci.yml run utils poetry run pytest

# To autoformat
docker-compose run utils poetry run autopep8 --in-place --aggressive --aggressive --recursive .

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc