Research
Security News
Malicious npm Package Targets Solana Developers and Hijacks Funds
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Gradients provide a self consistency test function to perform gradient checking on your deep learning models. It uses centered finite difference approximation method to check the difference between analytical and numerical gradients and report if the check fails on any parameters of your model. Currently the library supports only PyTorch models built with custom layers, custom loss functions, activation functions and any neural network function subclassing AutoGrad
.
pip install gradients
Optimizing deep learning models is a two step process:
Compute gradients with respect to parameters
Update the parameters given the gradients
In PyTorch, step 1 is done by the type-based automatic differentiation system torch.nn.autograd
and 2 by the package implementing optimization algorithms torch.optim
. Using them, we can develop fully customized deep learning models with torch.nn.Module
and test them using Gradient
as follows;
class MySigmoid(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
output = 1/(1+torch.exp(-input))
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
input, = ctx.saved_tensors
return grad_output*input*(1-input)
class MSELoss(torch.autograd.Function):
@staticmethod
def forward(ctx, y_pred, y):
ctx.save_for_backward(y_pred, y)
return ((y_pred-y)**2).sum()/y_pred.shape[0]
@staticmethod
def backward(ctx, grad_output):
y_pred, y = ctx.saved_tensors
grad_input = 2 * (y_pred-y)/y_pred.shape[0]
return grad_input, None
class MyModel(torch.nn.Module):
def __init__(self,D_in, D_out):
super(MyModel,self).__init__()
self.w1 = torch.nn.Parameter(torch.randn(D_in, D_out), requires_grad=True)
self.sigmoid = MySigmoid.apply
def forward(self,x):
y_pred = self.sigmoid(x.mm(self.w1))
return y_pred
import torch
from gradients import Gradient
N, D_in, D_out = 10, 4, 3
# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
# Construct model by instantiating the class defined above
mymodel = MyModel(D_in, D_out)
criterion = MSELoss.apply
# Test custom build model
Gradient(mymodel,x,y,criterion,eps=1e-8)
Gradients
@software{nambusubramaniyan_saranraj_2021_5176243,
author = {Nambusubramaniyan, Saranraj},
title = {gradients},
month = aug,
year = 2021,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.5176243},
url = {https://doi.org/10.5281/zenodo.5176243}
}```
FAQs
Gradient Checker for Custom built PyTorch Models
We found that gradients demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.