You're Invited: Meet the Socket team at BSidesSF and RSAC - April 27 - May 1.RSVP
Socket
Sign inDemoInstall
Socket

graphesn

Package Overview
Dependencies
Maintainers
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

graphesn

Python implementation of Deep Graph Echo State Networks

0.2.17
PyPI
Maintainers
3

Graph ESN library

Pytorch implementation of echo state networks for static graphs and discrete-time dynamic graphs.

Installation

Easiest way to get our library is via python package:

pip install graphesn

Usage

The library is quite straightforward to use:

from graphesn import StaticGraphReservoir, Readout, initializer
from torch_geometric.data import Data

data = Data(...)

reservoir = StaticGraphReservoir(num_layers=3, in_features=8, hidden_features=16)
reservoir.initialize_parameters(recurrent=initializer('uniform', rho=.9), input=initializer('uniform', scale=1))
embeddings = reservoir(data.edge_index, data.x)

readout = Readout(num_features=reservoir.out_features, num_targets=3)
readout.fit(data=(embeddings, data.y), regularization=1e-3)
predictions = readout(embeddings)

Code outlook

The library is contained in folder src/graphesn:

  • reservoir.py implementation of reservoirs for static and discrete-time dynamic graphs;
  • matrix.py random matrices generating functions;
  • readout.py implementation of a linear readout for large-scale ridge regression;
  • data.py classes to represent temporal and dynamic graphs;
  • dataset.py some dynamic graph datasets;
  • util.py general utilities.

The examples folder contains demos for our library on some common graph datasets.

Contributing

This research software is provided as-is. We are working on this library in our spare time.

Code is released under the MIT license, see LICENSE for details.

If you find a bug, please open an issue to report it, and we will do our best to solve it. For general or technical questions, please email us rather than opening an issue.

References

  • C. Gallicchio, A. Micheli (2010). Graph Echo State Networks. The 2010 International Joint Conference on Neural Networks (IJCNN 2010), pp. 3967–3974.
  • C. Gallicchio, A. Micheli (2020). Fast and Deep Graph Neural Networks. The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20).
  • C. Gallicchio, A. Micheli (2020). Ring Reservoir Neural Networks for Graphs. The 2020 International Joint Conference on Neural Networks (IJCNN 2020).
  • D. Tortorella, A. Micheli (2021). Dynamic Graph Echo State Networks. Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2021), pp. 99–104.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts