img2table
img2table
is a simple, easy to use, table identification and extraction Python Library based on OpenCV image
processing that supports most common image file formats as well as PDF files.
Thanks to its design, it provides a practical and lighter alternative to Neural Networks based solutions, especially for usage on CPU.
Table of contents
Installation
The library can be installed via pip:
pip install img2table
: Standard installation, supporting Tesseract
pip install img2table[paddle]
: For usage with Paddle OCR
pip install img2table[easyocr]
: For usage with EasyOCR
pip install img2table[surya]
: For usage with Surya OCR
pip install img2table[gcp]
: For usage with Google Vision OCR
pip install img2table[aws]
: For usage with AWS Textract OCR
pip install img2table[azure]
: For usage with Azure Cognitive Services OCR
Features
- Table identification for images and PDF files, including bounding boxes at the table cell level
- Handling of complex table structures such as merged cells
- Handling of implicit content - see example
- Table content extraction by providing support for OCR services / tools
- Extracted tables are returned as a simple object, including a Pandas DataFrame representation
- Export extracted tables to an Excel file, preserving their original structure
Supported file formats
Images
Images are loaded using the opencv-python
library, supported formats are listed below.
Supported image formats
- Windows bitmaps - .bmp, .dib
- JPEG files - .jpeg, .jpg, *.jpe
- JPEG 2000 files - *.jp2
- Portable Network Graphics - *.png
- WebP - *.webp
- Portable image format - .pbm, .pgm, .ppm .pxm, *.pnm
- PFM files - *.pfm
- Sun rasters - .sr, .ras
- TIFF files - .tiff, .tif
- OpenEXR Image files - *.exr
- Radiance HDR - .hdr, .pic
- Raster and Vector geospatial data supported by GDAL
OpenCV: Image file reading and writing
Multi-page images are not supported.
PDF
Both native and scanned PDF files are supported.
Usage
Documents
Images
Images are instantiated as follows :
from img2table.document import Image
image = Image(src,
detect_rotation=False)
Parameters
- src : str,
pathlib.Path
, bytes or io.BytesIO
, required
- Image source
- detect_rotation : bool, optional, default
False
- Detect and correct skew/rotation of the image
The implemented method to handle skewed/rotated images supports skew angles up to 45° and is
based on the publication by
Huang, 2020.
Setting the
detect_rotation
parameter to
True
, image coordinates and bounding boxes returned by other
methods might not correspond to the original image.
PDF
PDF files are instantiated as follows :
from img2table.document import PDF
pdf = PDF(src,
pages=[0, 2],
detect_rotation=False,
pdf_text_extraction=True)
Parameters
- src : str,
pathlib.Path
, bytes or io.BytesIO
, required
- PDF source
- pages : list, optional, default
None
- List of PDF page indexes to be processed. If None, all pages are processed
- detect_rotation : bool, optional, default
False
- Detect and correct skew/rotation of extracted images from the PDF
- pdf_text_extraction : bool, optional, default
True
- Extract text from the PDF file for native PDFs
PDF pages are converted to images with a 200 DPI for table identification.
OCR
img2table
provides an interface for several OCR services and tools in order to parse table content.
If possible (i.e for native PDF), PDF text will be extracted directly from the file and the OCR service/tool will not be called.
Tesseract
from img2table.ocr import TesseractOCR
ocr = TesseractOCR(n_threads=1,
lang="eng",
psm=11,
tessdata_dir="...")
Parameters
- n_threads : int, optional, default
1
- Number of concurrent threads used to call Tesseract
- lang : str, optional, default
"eng"
- Lang parameter used in Tesseract for text extraction
- psm : int, optional, default
11
- PSM parameter used in Tesseract, run
tesseract --help-psm
for details
- tessdata_dir : str, optional, default
None
- Directory containing Tesseract traineddata files. If None, the
TESSDATA_PREFIX
env variable is used.
Usage of Tesseract-OCR requires prior installation.
Check documentation for instructions.
For Windows users getting environment variable errors, you can check this tutorial
PaddleOCR
PaddleOCR is an open-source OCR based on Deep Learning models.
At first use, relevant languages models will be downloaded.
from img2table.ocr import PaddleOCR
ocr = PaddleOCR(lang="en",
kw={"kwarg": kw_value, ...})
Parameters
- lang : str, optional, default
"en"
- Lang parameter used in Paddle for text extraction, check documentation for available languages
- kw : dict, optional, default
None
- Dictionary containing additional keyword arguments passed to the PaddleOCR constructor.
NB: For usage of PaddleOCR with GPU, the CUDA specific version of paddlepaddle-gpu has to be installed by the user manually
as stated in this issue.
pip install paddlepaddle-gpu==2.5.0rc1.post118 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
pip install paddleocr img2table
If you get an error trying to run PaddleOCR on Ubuntu,
please check this issue for a working solution.
EasyOCR
EasyOCR is an open-source OCR based on Deep Learning models.
At first use, relevant languages models will be downloaded.
from img2table.ocr import EasyOCR
ocr = EasyOCR(lang=["en"],
kw={"kwarg": kw_value, ...})
Parameters
- lang : list, optional, default
["en"]
- Lang parameter used in EasyOCR for text extraction, check documentation for available languages
- kw : dict, optional, default
None
- Dictionary containing additional keyword arguments passed to the EasyOCR
Reader
constructor.
docTR
docTR is an open-source OCR based on Deep Learning models.
In order to be used, docTR has to be installed by the user beforehand. Installation procedures are detailed in
the package documentation
from img2table.ocr import DocTR
ocr = DocTR(detect_language=False,
kw={"kwarg": kw_value, ...})
Parameters
- detect_language : bool, optional, default
False
- Parameter indicating if language prediction is run on the document
- kw : dict, optional, default
None
- Dictionary containing additional keyword arguments passed to the docTR
ocr_predictor
method.
Surya OCR
Only available for python >= 3.10
Surya is an open-source OCR based on Deep Learning models.
At first use, relevant models will be downloaded.
from img2table.ocr import SuryaOCR
ocr = SuryaOCR(langs=["en"])
Parameters
- langs : list, optional, default
["en"]
- Lang parameter used in Surya OCR for text extraction
Google Vision
Authentication to GCP can be done by setting the standard GOOGLE_APPLICATION_CREDENTIALS
environment variable.
If this variable is missing, an API key should be provided via the api_key
parameter.
from img2table.ocr import VisionOCR
ocr = VisionOCR(api_key="api_key", timeout=15)
Parameters
- api_key : str, optional, default
None
- Google Vision API key
- timeout : int, optional, default
15
- API requests timeout, in seconds
AWS Textract
When using AWS Textract, the DetectDocumentText API is exclusively called.
Authentication to AWS can be done by passing credentials to the TextractOCR
class.
If credentials are not provided, authentication is done using environment variables or configuration files.
Check boto3
documentation for more details.
from img2table.ocr import TextractOCR
ocr = TextractOCR(aws_access_key_id="***",
aws_secret_access_key="***",
aws_session_token="***",
region="eu-west-1")
Parameters
- aws_access_key_id : str, optional, default
None
- AWS access key id
- aws_secret_access_key : str, optional, default
None
- AWS secret access key
- aws_session_token : str, optional, default
None
- AWS temporary session token
- region : str, optional, default
None
- AWS server region
Azure Cognitive Services
from img2table.ocr import AzureOCR
ocr = AzureOCR(endpoint="abc.azure.com",
subscription_key="***")
Parameters
- endpoint : str, optional, default
None
- Azure Cognitive Services endpoint. If None, inferred from the
COMPUTER_VISION_ENDPOINT
environment variable.
- subscription_key : str, optional, default
None
- Azure Cognitive Services subscription key. If None, inferred from the
COMPUTER_VISION_SUBSCRIPTION_KEY
environment variable.
Multiple tables can be extracted at once from a PDF page/ an image using the extract_tables
method of a document.
from img2table.ocr import TesseractOCR
from img2table.document import Image
ocr = TesseractOCR(n_threads=1, lang="eng")
doc = Image(src)
extracted_tables = doc.extract_tables(ocr=ocr,
implicit_rows=False,
implicit_columns=False,
borderless_tables=False,
min_confidence=50)
Parameters
- ocr : OCRInstance, optional, default
None
- OCR instance used to parse document text. If None, cells content will not be extracted
- implicit_rows : bool, optional, default
False
- Boolean indicating if implicit rows should be identified - check related example
- implicit_columns : bool, optional, default
False
- Boolean indicating if implicit columns should be identified - check related example
- borderless_tables : bool, optional, default
False
- Boolean indicating if borderless tables are extracted on top of bordered tables.
- min_confidence : int, optional, default
50
- Minimum confidence level from OCR in order to process text, from 0 (worst) to 99 (best)
NB: Borderless table extraction can, by design, only extract tables with 3 or more columns.
Method return
The ExtractedTable
class is used to model extracted tables from documents.
Attributes
- bbox :
BBox
- Table bounding box
- title : str
- Extracted title of the table
- content :
OrderedDict
- Dict with row indexes as keys and list of
TableCell
objects as values
- df :
pd.DataFrame
- Pandas DataFrame representation of the table
- html :
str
- HTML representation of the table
In order to access bounding boxes at the cell level, you can use the following code snippet :
for id_row, row in enumerate(table.content.values()):
for id_col, cell in enumerate(row):
x1 = cell.bbox.x1
y1 = cell.bbox.y1
x2 = cell.bbox.x2
y2 = cell.bbox.y2
value = cell.value
Images
extract_tables
method from the Image
class returns a list of ExtractedTable
objects.
output = [ExtractedTable(...), ExtractedTable(...), ...]
PDF
extract_tables
method from the PDF
class returns an OrderedDict
object with page indexes as keys and lists of ExtractedTable
objects.
output = {
0: [ExtractedTable(...), ...],
1: [],
...
last_page: [ExtractedTable(...), ...]
}
Excel export
Tables extracted from a document can be exported to a xlsx file. The resulting file is composed of one worksheet per extracted table.
Method arguments are mostly common with the extract_tables
method.
from img2table.ocr import TesseractOCR
from img2table.document import Image
ocr = TesseractOCR(n_threads=1, lang="eng")
doc = Image(src)
doc.to_xlsx(dest=dest,
ocr=ocr,
implicit_rows=False,
implicit_columns=False,
borderless_tables=False,
min_confidence=50)
Parameters
- dest : str,
pathlib.Path
or io.BytesIO
, required
- Destination for xlsx file
- ocr : OCRInstance, optional, default
None
- OCR instance used to parse document text. If None, cells content will not be extracted
- implicit_rows : bool, optional, default
False
- Boolean indicating if implicit rows should be identified - check related example
- implicit_rows : bool, optional, default
False
- Boolean indicating if implicit columns should be identified - check related example
- borderless_tables : bool, optional, default
False
- Boolean indicating if borderless tables are extracted. It requires to provide an OCR to the method in order to be performed - feature in alpha version
- min_confidence : int, optional, default
50
- Minimum confidence level from OCR in order to process text, from 0 (worst) to 99 (best)
Returns
If a io.BytesIO
buffer is passed as dest arg, it is returned containing xlsx data
Examples
Several Jupyter notebooks with examples are available :
-
Basic usage: generic library usage, including examples with images, PDF and OCRs
-
Borderless tables: specific examples dedicated to the extraction of borderless tables
-
Implicit content: illustrated effect
of the parameter
implicit_rows
/implicit_columns
of the extract_tables
method
Caveats / FYI
-
For table extraction, results are highly dependent on OCR quality. By design, tables where no OCR data
can be found are not returned.
-
The library is tailored for usage on documents with white/light background.
Effectiveness can not be guaranteed on other type of documents.
-
Table detection using only OpenCV processing can have some limitations. If the library fails to detect tables,
you may check CNN based solutions.