New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

imsciences

Package Overview
Dependencies
Maintainers
5
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

imsciences

IMS Data Processing Package

  • 0.9.5.7
  • PyPI
  • Socket score

Maintainers
5

IMS Package Documentation

The Independent Marketing Sciences package is a Python library designed to process incoming data into a format tailored for projects, particularly those utilising weekly time series data. This package offers a suite of functions for efficient data collection, manipulation, visualisation and analysis.


Key Features

  • Seamless data processing for time series workflows.
  • Aggregation, filtering, and transformation of time series data.
  • Visualising Data
  • Integration with external data sources like FRED, Bank of England and ONS.

Table of Contents

  1. Usage
  2. Data Processing for Time Series
  3. Data Processing for Incrementality Testing
  4. Data Visualisations
  5. Data Pulling
  6. Installation
  7. License
  8. Roadmap

Usage

from imsciences import dataprocessing, geoprocessing, datapull, datavis
ims_proc = dataprocessing()
ims_geo = geoprocessing()
ims_pull = datapull()
ims_vis = datavis()

Data Processing for Time Series

1. get_wd_levels

  • Description: Get the working directory with the option of moving up parents.
  • Usage: get_wd_levels(levels)
  • Example: get_wd_levels(0)

2. aggregate_daily_to_wc_long

  • Description: Aggregates daily data into weekly data, grouping and summing specified columns, starting on a specified day of the week.
  • Usage: aggregate_daily_to_wc_long(df, date_column, group_columns, sum_columns, wc, aggregation='sum')
  • Example: aggregate_daily_to_wc_long(df, 'date', ['platform'], ['cost', 'impressions', 'clicks'], 'mon', 'average')

3. convert_monthly_to_daily

  • Description: Converts monthly data in a DataFrame to daily data by expanding and dividing the numeric values.
  • Usage: convert_monthly_to_daily(df, date_column, divide=True)
  • Example: convert_monthly_to_daily(df, 'date')

4. week_of_year_mapping

  • Description: Converts a week column in 'yyyy-Www' or 'yyyy-ww' format to week commencing date.
  • Usage: week_of_year_mapping(df, week_col, start_day_str)
  • Example: week_of_year_mapping(df, 'week', 'mon')

5. rename_cols

  • Description: Renames columns in a pandas DataFrame with a specified prefix or format.
  • Usage: rename_cols(df, name='ame_')
  • Example: rename_cols(df, 'ame_facebook')

6. merge_new_and_old

  • Description: Creates a new DataFrame by merging old and new dataframes based on a cutoff date.
  • Usage: merge_new_and_old(old_df, old_col, new_df, new_col, cutoff_date, date_col_name='OBS')
  • Example: merge_new_and_old(df1, 'old_col', df2, 'new_col', '2023-01-15')

7. merge_dataframes_on_column

  • Description: Merge a list of DataFrames on a common column.
  • Usage: merge_dataframes_on_column(dataframes, common_column='OBS', merge_how='outer')
  • Example: merge_dataframes_on_column([df1, df2, df3], common_column='OBS', merge_how='outer')

8. merge_and_update_dfs

  • Description: Merges two dataframes, updating columns from the second dataframe where values are available.
  • Usage: merge_and_update_dfs(df1, df2, key_column)
  • Example: merge_and_update_dfs(processed_facebook, finalised_meta, 'OBS')

9. convert_us_to_uk_dates

  • Description: Convert a DataFrame column with mixed US and UK date formats to datetime.
  • Usage: convert_us_to_uk_dates(df, date_col)
  • Example: convert_us_to_uk_dates(df, 'date')

10. combine_sheets

  • Description: Combines multiple DataFrames from a dictionary into a single DataFrame.
  • Usage: combine_sheets(all_sheets)
  • Example: combine_sheets({'Sheet1': df1, 'Sheet2': df2})

11. pivot_table

  • Description: Dynamically pivots a DataFrame based on specified columns.
  • Usage: pivot_table(df, index_col, columns, values_col, filters_dict=None, fill_value=0, aggfunc='sum', margins=False, margins_name='Total', datetime_trans_needed=True, reverse_header_order=False, fill_missing_weekly_dates=False, week_commencing='W-MON')
  • Example: pivot_table(df, 'OBS', 'Channel Short Names', 'Value', filters_dict={'Master Include': ' == 1'}, fill_value=0)

12. apply_lookup_table_for_columns

  • Description: Maps substrings in columns to new values based on a dictionary.
  • Usage: apply_lookup_table_for_columns(df, col_names, to_find_dict, if_not_in_dict='Other', new_column_name='Mapping')
  • Example: apply_lookup_table_for_columns(df, col_names, {'spend': 'spd'}, if_not_in_dict='Other', new_column_name='Metrics Short')

13. aggregate_daily_to_wc_wide

  • Description: Aggregates daily data into weekly data and pivots it to wide format.
  • Usage: aggregate_daily_to_wc_wide(df, date_column, group_columns, sum_columns, wc='sun', aggregation='sum', include_totals=False)
  • Example: aggregate_daily_to_wc_wide(df, 'date', ['platform'], ['cost', 'impressions'], 'mon', 'average', True)

14. merge_cols_with_seperator

  • Description: Merges multiple columns in a DataFrame into one column with a specified separator.
  • Usage: merge_cols_with_seperator(df, col_names, separator='_', output_column_name='Merged')
  • Example: merge_cols_with_seperator(df, ['Campaign', 'Product'], separator='|', output_column_name='Merged Columns')

15. check_sum_of_df_cols_are_equal

  • Description: Checks if the sum of two columns in two DataFrames are equal and provides the difference.
  • Usage: check_sum_of_df_cols_are_equal(df_1, df_2, cols_1, cols_2)
  • Example: check_sum_of_df_cols_are_equal(df_1, df_2, 'Media Cost', 'Spend')

16. convert_2_df_cols_to_dict

  • Description: Creates a dictionary from two DataFrame columns.
  • Usage: convert_2_df_cols_to_dict(df, key_col, value_col)
  • Example: convert_2_df_cols_to_dict(df, 'Campaign', 'Channel')

17. create_FY_and_H_columns

  • Description: Adds financial year and half-year columns to a DataFrame based on a start date.
  • Usage: create_FY_and_H_columns(df, index_col, start_date, starting_FY, short_format='No', half_years='No', combined_FY_and_H='No')
  • Example: create_FY_and_H_columns(df, 'Week', '2022-10-03', 'FY2023', short_format='Yes')

18. keyword_lookup_replacement

  • Description: Updates values in a column based on a lookup dictionary with conditional logic.
  • Usage: keyword_lookup_replacement(df, col, replacement_rows, cols_to_merge, replacement_lookup_dict, output_column_name='Updated Column')
  • Example: keyword_lookup_replacement(df, 'channel', 'Paid Search Generic', ['channel', 'segment'], lookup_dict, output_column_name='Channel New')

19. create_new_version_of_col_using_LUT

  • Description: Creates a new column based on a lookup table applied to an existing column.
  • Usage: create_new_version_of_col_using_LUT(df, keys_col, value_col, dict_for_specific_changes, new_col_name='New Version of Old Col')
  • Example: create_new_version_of_col_using_LUT(df, 'Campaign Name', 'Campaign Type', lookup_dict)

20. convert_df_wide_2_long

  • Description: Converts a wide-format DataFrame into a long-format DataFrame.
  • Usage: convert_df_wide_2_long(df, value_cols, variable_col_name='Stacked', value_col_name='Value')
  • Example: convert_df_wide_2_long(df, ['col1', 'col2'], variable_col_name='Var', value_col_name='Val')

21. manually_edit_data

  • Description: Manually updates specified cells in a DataFrame based on filters.
  • Usage: manually_edit_data(df, filters_dict, col_to_change, new_value, change_in_existing_df_col='No', new_col_to_change_name='New', manual_edit_col_name=None, add_notes='No', existing_note_col_name=None, note=None)
  • Example: manually_edit_data(df, {'col1': '== 1'}, 'col2', 'new_val', add_notes='Yes', note='Manual Update')

22. format_numbers_with_commas

  • Description: Formats numerical columns with commas and a specified number of decimal places.
  • Usage: format_numbers_with_commas(df, decimal_length_chosen=2)
  • Example: format_numbers_with_commas(df, decimal_length_chosen=1)

23. filter_df_on_multiple_conditions

  • Description: Filters a DataFrame based on multiple column conditions.
  • Usage: filter_df_on_multiple_conditions(df, filters_dict)
  • Example: filter_df_on_multiple_conditions(df, {'col1': '>= 5', 'col2': '== 'val''})

24. read_and_concatenate_files

  • Description: Reads and concatenates files from a specified folder into a single DataFrame.
  • Usage: read_and_concatenate_files(folder_path, file_type='csv')
  • Example: read_and_concatenate_files('/path/to/files', file_type='xlsx')

25. upgrade_outdated_packages

  • Description: Upgrades all outdated Python packages except specified ones.
  • Usage: upgrade_outdated_packages(exclude_packages=['twine'])
  • Example: upgrade_outdated_packages(exclude_packages=['pip', 'setuptools'])

26. convert_mixed_formats_dates

  • Description: Converts mixed-format date columns into standardized datetime format.
  • Usage: convert_mixed_formats_dates(df, column_name)
  • Example: convert_mixed_formats_dates(df, 'date_col')

27. fill_weekly_date_range

  • Description: Fills in missing weekly dates in a DataFrame with a specified frequency.
  • Usage: fill_weekly_date_range(df, date_column, freq='W-MON')
  • Example: fill_weekly_date_range(df, 'date_col')

28. add_prefix_and_suffix

  • Description: Adds prefixes and/or suffixes to column names, with an option to exclude a date column.
  • Usage: add_prefix_and_suffix(df, prefix='', suffix='', date_col=None)
  • Example: add_prefix_and_suffix(df, prefix='pre_', suffix='_suf', date_col='date_col')

29. create_dummies

  • Description: Creates dummy variables for columns, with an option to add a total dummy column.
  • Usage: create_dummies(df, date_col=None, dummy_threshold=0, add_total_dummy_col='No', total_col_name='total')
  • Example: create_dummies(df, date_col='date_col', dummy_threshold=1)

30. replace_substrings

  • Description: Replaces substrings in a column based on a dictionary, with options for case conversion and new column creation.
  • Usage: replace_substrings(df, column, replacements, to_lower=False, new_column=None)
  • Example: replace_substrings(df, 'text_col', {'old': 'new'}, to_lower=True, new_column='updated_text')

31. add_total_column

  • Description: Adds a total column to a DataFrame by summing values across columns, optionally excluding one.
  • Usage: add_total_column(df, exclude_col=None, total_col_name='Total')
  • Example: add_total_column(df, exclude_col='date_col')

32. apply_lookup_table_based_on_substring

  • Description: Categorizes text in a column using a lookup table based on substrings.
  • Usage: apply_lookup_table_based_on_substring(df, column_name, category_dict, new_col_name='Category', other_label='Other')
  • Example: apply_lookup_table_based_on_substring(df, 'text_col', {'sub1': 'cat1', 'sub2': 'cat2'})

33. compare_overlap

  • Description: Compares overlapping periods between two DataFrames and summarizes differences.
  • Usage: compare_overlap(df1, df2, date_col)
  • Example: compare_overlap(df1, df2, 'date_col')

34. week_commencing_2_week_commencing_conversion_isoweekday

  • Description: Maps dates to the start of the current ISO week based on a specified weekday.
  • Usage: week_commencing_2_week_commencing_conversion_isoweekday(df, date_col, week_commencing='mon')
  • Example: week_commencing_2_week_commencing_conversion_isoweekday(df, 'date_col', week_commencing='fri')

35. seasonality_feature_extraction

  • Description: Splits data into train/test sets, trains XGBoost and Random Forest on all features, extracts top features based on feature importance, merges them, optionally retrains models on top and combined features, and returns a dict of results.
  • Usage: seasonality_feature_extraction(df, kpi_var, n_features=10, test_size=0.1, random_state=42, shuffle=False)
  • Example: seasonality_feature_extraction(df, 'kpi_total_sales', n_features=5, test_size=0.2, random_state=123, shuffle=True)

Data Processing for Incrementality Testing

1. pull_ga

  • Description: Pull in GA4 data for geo experiments.
  • Usage: pull_ga(credentials_file, property_id, start_date, country, metrics)
  • Example: pull_ga('GeoExperiment-31c5f5db2c39.json', '111111111', '2023-10-15', 'United Kingdom', ['totalUsers', 'newUsers'])

2. process_itv_analysis

  • Description: Processes region-level data for geo experiments by mapping ITV regions, grouping selected metrics, merging with media spend data, and saving the result.
  • Usage: process_itv_analysis(self, raw_df, itv_path, cities_path, media_spend_path, output_path, test_group, control_group, columns_to_aggregate, aggregator_list)
  • Example: process_itv_analysis(df, 'itv regional mapping.csv', 'Geo_Mappings_with_Coordinates.xlsx', 'IMS.xlsx', 'itv_for_test_analysis_itvx.csv', ['West', 'Westcountry', 'Tyne Tees'], ['Central Scotland', 'North Scotland'], ['newUsers', 'transactions'], ['sum', 'sum'])

3. process_city_analysis

  • Description: Processes city-level data for geo experiments by grouping selected metrics, merging with media spend data, and saving the result.
  • Usage: process_city_analysis(raw_df, spend_df, output_path, test_group, control_group, columns_to_aggregate, aggregator_list)
  • Example: process_city_analysis(df, spend, output, ['Barnsley'], ['Aberdeen'], ['newUsers', 'transactions'], ['sum', 'sum'])

Data Visualisations

1. plot_one

  • Description: Plots a specified column from a DataFrame with white background and black axes.
  • Usage: plot_one(df1, col1, date_column)
  • Example: plot_one(df, 'sales', 'date')

2. plot_two

  • Description: Plots specified columns from two DataFrames, optionally on the same or separate y-axes.
  • Usage: plot_two(df1, col1, df2, col2, date_column, same_axis=True)
  • Example: plot_two(df1, 'sales', df2, 'revenue', 'date', same_axis=False)

3. plot_chart

  • Description: Plots various chart types using Plotly, including line, bar, scatter, area, pie, etc.
  • Usage: plot_chart(df, date_col, value_cols, chart_type='line', title='Chart', x_title='Date', y_title='Values')
  • Example: plot_chart(df, 'date', ['sales', 'revenue'], chart_type='line', title='Sales and Revenue')

Data Pulling

1. pull_fred_data

  • Description: Fetch data from FRED using series ID tokens.
  • Usage: pull_fred_data(week_commencing, series_id_list)
  • Example: pull_fred_data('mon', ['GPDIC1', 'Y057RX1Q020SBEA', 'GCEC1', 'ND000333Q', 'Y006RX1Q020SBEA'])

2. pull_boe_data

  • Description: Fetch and process Bank of England interest rate data.
  • Usage: pull_boe_data(week_commencing)
  • Example: pull_boe_data('mon')

3. pull_oecd

  • Description: Fetch macroeconomic data from OECD for a specified country.
  • Usage: pull_oecd(country='GBR', week_commencing='mon', start_date='2020-01-01')
  • Example: pull_oecd('GBR', 'mon', '2000-01-01')

4. get_google_mobility_data

  • Description: Fetch Google Mobility data for the specified country.
  • Usage: get_google_mobility_data(country, wc)
  • Example: get_google_mobility_data('United Kingdom', 'mon')

5. pull_seasonality

  • Description: Generate combined dummy variables for seasonality, trends, and COVID lockdowns.
  • Usage: pull_seasonality(week_commencing, start_date, countries)
  • Example: pull_seasonality('mon', '2020-01-01', ['US', 'GB'])

6. pull_weather

  • Description: Fetch and process historical weather data for the specified country.
  • Usage: pull_weather(week_commencing, start_date, country)
  • Example: pull_weather('mon', '2020-01-01', 'GBR')

7. pull_macro_ons_uk

  • Description: Fetch and process time series data from the Beta ONS API.
  • Usage: pull_macro_ons_uk(additional_list, week_commencing, sector)
  • Example: pull_macro_ons_uk(['HBOI'], 'mon', 'fast_food')

8. pull_yfinance

  • Description: Fetch and process time series data from Yahoo Finance.
  • Usage: pull_yfinance(tickers, week_start_day)
  • Example: pull_yfinance(['^FTMC', '^IXIC'], 'mon')

9. pull_sports_events

  • Description: Pull a veriety of sports events primaraly football and rugby.
  • Usage: pull_sports_events(start_date, week_commencing)
  • Example: pull_sports_events('2020-01-01', 'mon')

Installation

Install the IMS package via pip:

pip install imsciences

License

This project is licensed under the MIT License. License


Roadmap

  • [Fixes]: Naming conventions are inconsistent/ have changed from previous seasonality tools (eg. 'seas_nyd' is named 'seas_new_years_day', 'week_1' is named 'seas_1')
  • [Fixes]: Naming conventions can be inconsistent within the data pull (suffix on some var is 'gb' on some it is 'uk' and for others there is no suffix) - furthermore, there is a lack of consistency for global holidays/events (Christmas, Easter, Halloween, etc) - some have regional suffix and others don't.
  • [Additions]: Need to add new data pulls for more macro and seasonal varibles

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc