Security News
GitHub Removes Malicious Pull Requests Targeting Open Source Repositories
GitHub removed 27 malicious pull requests attempting to inject harmful code across multiple open source repositories, in another round of low-effort attacks.
Knee-point detection in Python
This repository is an attempt to implement the kneedle algorithm, published here. Given a set of x
and y
values, kneed
will return the knee point of the function. The knee point is the point of maximum curvature.
kneed
has been tested with Python 3.7, 3.8, 3.9, and 3.10.
anaconda
$ conda install -c conda-forge kneed
pip
$ pip install kneed # To install only knee-detection algorithm
$ pip install kneed[plot] # To also install plotting functions for quick visualizations
Clone from GitHub
$ git clone https://github.com/arvkevi/kneed.git && cd kneed
$ pip install -e .
These steps introduce how to use kneed
by reproducing Figure 2 from the manuscript.
The DataGenerator
class is only included as a utility to generate sample datasets.
Note:
x
andy
must be equal length arrays.
from kneed import DataGenerator, KneeLocator
x, y = DataGenerator.figure2()
print([round(i, 3) for i in x])
print([round(i, 3) for i in y])
[0.0, 0.111, 0.222, 0.333, 0.444, 0.556, 0.667, 0.778, 0.889, 1.0]
[-5.0, 0.263, 1.897, 2.692, 3.163, 3.475, 3.696, 3.861, 3.989, 4.091]
The knee (or elbow) point is calculated simply by instantiating the KneeLocator
class with x
, y
and the appropriate curve
and direction
.
Here, kneedle.knee
and/or kneedle.elbow
store the point of maximum curvature.
kneedle = KneeLocator(x, y, S=1.0, curve="concave", direction="increasing")
print(round(kneedle.knee, 3))
0.222
print(round(kneedle.elbow, 3))
0.222
The knee point returned is a value along the x
axis. The y
value at the knee can be identified:
print(round(kneedle.knee_y, 3))
1.897
The KneeLocator
class also has two plotting functions for quick visualizations.
Note that all (x, y) are transformed for the normalized plots
# Normalized data, normalized knee, and normalized distance curve.
kneedle.plot_knee_normalized()
# Raw data and knee.
kneedle.plot_knee()
Documentation of the parameters and a full API reference can be found here.
An interactive streamlit app was developed to help users explore the effect of tuning the parameters. There are two sites where you can test out kneed by copy-pasting your own data:
You can also run your own version -- head over to the source code for ikneed.
Contributions are welcome, please refer to CONTRIBUTING to learn more about how to contribute.
Finding a “Kneedle” in a Haystack: Detecting Knee Points in System Behavior Ville Satopa † , Jeannie Albrecht† , David Irwin‡ , and Barath Raghavan§ †Williams College, Williamstown, MA ‡University of Massachusetts Amherst, Amherst, MA § International Computer Science Institute, Berkeley, CA
FAQs
Knee-point detection in Python
We found that kneed demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
GitHub removed 27 malicious pull requests attempting to inject harmful code across multiple open source repositories, in another round of low-effort attacks.
Security News
RubyGems.org has added a new "maintainer" role that allows for publishing new versions of gems. This new permission type is aimed at improving security for gem owners and the service overall.
Security News
Node.js will be enforcing stricter semver-major PR policies a month before major releases to enhance stability and ensure reliable release candidates.