🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Book a DemoInstallSign in
Socket

langchain-google-vertexai

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

langchain-google-vertexai

An integration package connecting Google VertexAI and LangChain

2.0.26
PyPI
Maintainers
2

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Contents

  • Installation
  • Chat Models
  • Embeddings
  • LLMs
  • Code Generation

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and other Gemini variants.

To use, you should have a Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-2.0-flash-001")
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be:

  • A public image URL
  • An accessible Google Cloud Storage (GCS) file (e.g., "gcs://path/to/file.png")
  • A base64 encoded image (e.g., "")

Embeddings

Google Cloud embeddings models can be used as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

Use Google Cloud's generative AI models as LangChain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

Code Generation

You can use Gemini models for code generation tasks to generate code snippets, functions, or scripts in various programming languages.

Example: Generate a Python function

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro", temperature=0.3, max_output_tokens=1000)

prompt = "Write a Python function that checks if a string is a valid email address."

generated_code = llm.invoke(prompt)
print(generated_code)

Example: Generate JavaScript code

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro", temperature=0.3, max_output_tokens=1000)
prompt_js = "Write a JavaScript function that returns the factorial of a number."

print(llm.invoke(prompt_js))

Notes

  • Adjust temperature to control creativity (higher values increase randomness).
  • Use max_output_tokens to limit the length of the generated code.
  • Gemini models are well-suited for code generation tasks with advanced understanding of programming concepts.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts