Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
langchain-google-vertexai
Advanced tools
This package contains the LangChain integrations for Google Cloud generative models.
pip install -U langchain-google-vertexai
ChatVertexAI
class exposes models such as gemini-pro
and chat-bison
.
To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")
You can use other models, e.g. chat-bison
:
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")
Gemini vision model supports image inputs when providing a single chat message. Example:
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
content=[
{
"type": "text",
"text": "What's in this image?",
}, # You can optionally provide text parts
{"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
]
)
llm.invoke([message])
The value of image_url
can be any of the following:

)You can use Google Cloud's embeddings models as:
from langchain_google_vertexai import VertexAIEmbeddings
embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")
You can use Google Cloud's generative AI models as Langchain LLMs:
from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm
question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))
You can use Gemini and Palm models, including code-generations ones:
from langchain_google_vertexai import VertexAI
llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)
question = "Write a python function that checks if a string is a valid email address"
output = llm(question)
FAQs
An integration package connecting Google VertexAI and LangChain
We found that langchain-google-vertexai demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.