Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

lightning-bolts

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

lightning-bolts

Lightning Bolts is a community contribution for ML researchers.

  • 0.7.0
  • PyPI
  • Socket score

Maintainers
1

Deep Learning components for extending PyTorch Lightning


InstallationLatest DocsStable DocsAboutCommunityWebsiteLicense

PyPI Status PyPI Status Build Status codecov

Documentation Status Slack license DOI


Getting Started

Pip / Conda

pip install lightning-bolts
Other installations

Install bleeding-edge (no guarantees)

pip install https://github.com/Lightning-Universe/lightning-bolts/archive/refs/heads/master.zip

To install all optional dependencies

pip install lightning-bolts["extra"]

What is Bolts?

Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production.

Example 1: Accelerate Lightning Training with the Torch ORT Callback

Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the documentation for more details.

from pytorch_lightning import LightningModule, Trainer
import torchvision.models as models
from pl_bolts.callbacks import ORTCallback


class VisionModel(LightningModule):
    def __init__(self):
        super().__init__()
        self.model = models.vgg19_bn(pretrained=True)

    ...


model = VisionModel()
trainer = Trainer(gpus=1, callbacks=ORTCallback())
trainer.fit(model)
Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference

We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.

from pytorch_lightning import LightningModule, Trainer
import torchvision.models as models
from pl_bolts.callbacks import SparseMLCallback


class VisionModel(LightningModule):
    def __init__(self):
        super().__init__()
        self.model = models.vgg19_bn(pretrained=True)

    ...


model = VisionModel()
trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml"))
trainer.fit(model)

Are specific research implementations supported?

We'd like to encourage users to contribute general components that will help a broad range of problems; however, components that help specific domains will also be welcomed!

For example, a callback to help train SSL models would be a great contribution; however, the next greatest SSL model from your latest paper would be a good contribution to Lightning Flash.

Use Lightning Flash to train, predict and serve state-of-the-art models for applied research. We suggest looking at our VISSL Flash integration for SSL-based tasks.

Contribute!

Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community!

Join our Slack and/or read our CONTRIBUTING guidelines to get help becoming a contributor!


License

Please observe the Apache 2.0 license that is listed in this repository. In addition, the Lightning framework is Patent Pending.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc