
Research
Security News
The Landscape of Malicious Open Source Packages: 2025 Mid‑Year Threat Report
A look at the top trends in how threat actors are weaponizing open source packages to deliver malware and persist across the software supply chain.
An EASY TO USE function decorator for advanced logging of function execution, including arguments, return values, and execution time.
@logf()
is a Python decorator designed for uncomplicated and immediate addition of logging to functions. Its main goal is to provide developers with a tool that can be added quickly to any function and left in place without further adjustments.
I originally made @logf()
for my own use, but I hope it can be useful to others as well.
To integrate @logf()
into your projects:
pip install logfunc
Simply import the decorator to start using it:
from logfunc import logf
Apply the @logf()
decorator to functions you intend to log:
from logfunc import logf
@logf()
def concatenate_strings(str1: str, str2: str) -> str:
return str1 + str2
This setup ensures automatic logging of function name, parameters, return values, and execution time.
level
: Set the log level (DEBUG, INFO, WARNING, etc.).log_args
& log_return
: Control whether to log arguments and return values.max_str_len
: Limit the length of logged strings.log_exec_time
: Option to log the execution time.single_msg
: Consolidate all log data into a single message.use_print
: Choose to print()
log messages instead of using standard logging.log_stack_info
: Pass stack_info=$x
to .log()
but not printuse_logger
: Pass a logger name or logger object to use instead of logging.logidentifier
: Add a unique identifier to enter/exit log messages.print_all used to be an env var, now just unset LOGF_LEVEL and set USE_PRINT=True for the same effect.
Modify the behavior of @logf()
using environment variables:
Env Var | Example Values |
---|---|
LOGF_LEVEL | DEBUG, INFO, WARNING |
LOGF_MAX_STR_LEN | 10, 50, 10000000 |
LOGF_SINGLE_MSG | True, False |
LOGF_USE_PRINT | True, False |
LOGF_STACK_INFO | True, False |
LOGF_LOG_EXEC_TIME | True, False |
LOGF_LOG_ARGS | True, False |
LOGF_LOG_RETURN | True, False |
LOGF_USE_LOGGER | 'logger_name' |
LOGF_LOG_LEVEL | DEBUG, INFO, WARNING |
LOGF_IDENTIFIER | True, False |
See the following output for an example of how an env var will affect @logf()
behaviour:
With LOGF_USE_PRINT=True
:
mym2@Carys-MacBook-Pro logf % gitpoll ~/test
Running once...
-> __init__()[CwKVbK] | (<CmdExec >, 'git rev-parse --abbrev-ref HEAD') {}
<- __init__()[CwKVbK] 0.0048s | None
-> __init__()[BIimGf] | (<CmdExec >, 'git config --get branch.test.remote') {}
<- __init__()[BIimGf] 0.0040s | None
-> __init__()[ED1XW0] | (<CmdExec >, 'git config --get branch.test.merge') {}
<- __init__()[ED1XW0] 0.0039s | None
-> __init__()[dsPXjJ] | (<CmdExec >, 'git rev-parse refs/remotes//') {}
<- __init__()[dsPXjJ] 0.0044s | None
-> __init__()[5rkgc9] | (<CmdExec >, 'git rev-parse HEAD') {}
<- __init__()[5rkgc9] 0.0037s | None
-> __init__()[GDti62] | (<CmdExec >, 'git fetch') {}
<- __init__()[GDti62] 1.1160s | None
With LOGF_SINGLE_MSG=True
:
mym2@Carys-MacBook-Pro logf % gitpoll ~/test
Running once...
__init__() 0.0050s | (<CmdExec >, 'git rev-parse --abbrev-ref HEAD') {} | None
__init__() 0.0041s | (<CmdExec >, 'git config --get branch.test.remote') {} | None
__init__() 0.0041s | (<CmdExec >, 'git config --get branch.test.merge') {} | None
__init__() 0.0041s | (<CmdExec >, 'git rev-parse refs/remotes//') {} | None
__init__() 0.0038s | (<CmdExec >, 'git rev-parse HEAD') {} | None
__init__() 1.0993s | (<CmdExec >, 'git fetch') {} | None
Here are a couple of real-world examples of @logf()
usage:
from logfunc import logf
# Database operations
@logf(level='ERROR')
def db_insert(item):
# Insert item into database
pass
# Asynchronous tasks in an application
@logf()
async def fetch_data(url):
# Fetch data from URL asynchronously
return data
Activate/create your venv with python3 -m venv venv
and source venv/bin/activate
if you haven't already.
Run pip install -r requirements_dev.txt
to install the testing dependencies.
Run pytest tests.py
to run the tests.
Output should look like this:
---------- coverage: platform darwin, python 3.11.5-final-0 ----------
Name Stmts Miss Cover Missing
---------------------------------------------------
logfunc/__init__.py 2 0 100%
logfunc/config.py 59 0 100%
logfunc/defaults.py 2 0 100%
logfunc/main.py 69 0 100%
logfunc/msgs.py 8 0 100%
logfunc/utils.py 35 0 100%
logfunc/version.py 1 0 100%
---------------------------------------------------
TOTAL 176 0 100%
==================================== 25 passed in 0.06s
You can also just run the tests.py
file directly.
Contributions are welcome! Please feel free to submit a pull request or open an issue.
MIT
FAQs
An EASY TO USE function decorator for advanced logging of function execution, including arguments, return values, and execution time.
We found that logfunc demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A look at the top trends in how threat actors are weaponizing open source packages to deliver malware and persist across the software supply chain.
Security News
ESLint now supports HTML linting with 48 new rules, expanding its language plugin system to cover more of the modern web development stack.
Security News
CISA is discontinuing official RSS support for KEV and cybersecurity alerts, shifting updates to email and social media, disrupting automation workflows.