Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

maptiles

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

maptiles

Create map images and use as plot background

  • 0.1.6
  • PyPI
  • Socket score

Maintainers
1

maptiles

Plot on webmap backgrounds.

Installation

# from pypi
$ pip3 install maptiles

# alternatively, from github
$ git clone https://github.com/kota7/maptiles.git --depth 1
$ pip3 install -U ./maptiles

Illustrative examples

Map image on matplotlib axes

  • draw_map((lon1, lat1, lon2, lat2)) draws the map image of the specified rectangle behind the matplotlib axes.
  • The function returns a tuple of an Axes (the same object if ax argument is supplied) and AxesImage object of the map image.
  • Visualizations can be added further using the matplotlib features.

Remarks:

  • Longitude and latitudes must be given in angles. Internally longitudes are converted to [-180 to 180) scale. Latitudes must be in [-L, L] with L=85.0511287798. This L is the north and south limit of Web Mercator projection.
  • Zoom level is automatically chosen by heuristic calculation. The z option allows for explicit specification.
  • Aspect ratio is automatically adjusted by heuristic calculation. The aspect option allows for explicit specification.
  • If ax is not given, then a new axes is created internally.
  • The axes will be scaled by Web Mercator formula comaptible with the image.
from maptiles import draw_map

# 5th Avenue in Manhattan, New York
bounds = [286.02288365364075, 40.761816905893156, 286.0257428884506, 40.7593098808893]
fig, ax = plt.subplots(figsize=(10, 10))
draw_map(bounds, ax=ax)

uniqlo = [286.02380633354187, 40.76029726182907]
uniqlo[0] -= 360
arrow_from = uniqlo[0] + 0.0001, uniqlo[1] - 0.0002
ax.annotate("UNIQLO IS HERE!", uniqlo, xytext=arrow_from, fontsize=25,
            bbox={"facecolor": "white", "alpha":0.75, "boxstyle":"round"}, arrowprops={"width":1})
None
Zoom level 18 is chosen



png

# Goryokaku Castle in Hokkaido, Japan
goryokaku = [[140.7545506954193, 41.79877552882002], [140.7546043395996, 41.797391817910004], [140.7536494731903, 41.7962160400744],
             [140.7536494731903, 41.79608006437536], [140.75378894805905, 41.79592009259535], [140.75480818748474, 41.79568013417667],
             [140.75480818748474, 41.79524020807576], [140.75473308563232, 41.79524820675909], [140.7547116279602, 41.79520021464413],
             [140.7548189163208, 41.79519221595479], [140.75482964515686, 41.7948002789552], [140.755033493042, 41.79467229900768],
             [140.75620293617249, 41.79503224195874], [140.75687885284424, 41.794456332266776], [140.75702905654907, 41.79442433713216],
             [140.75724363327026, 41.79444033470147], [140.75735092163086, 41.79449632616259], [140.75838088989255, 41.795648139652975],
             [140.76006531715393, 41.79620004294831], [140.76016187667847, 41.796288027092395], [140.76021552085876, 41.79639200819787],
             [140.7601833343506, 41.79651198618687], [140.75906753540036, 41.7976557650716], [140.75889587402344, 41.79899148100668],
             [140.75873494148254, 41.79915144512023], [140.75859546661377, 41.79919143608624], [140.7584023475647, 41.79915144512023],
             [140.7567822933197, 41.798759532332795], [140.7567822933197, 41.79872753934637], [140.75671792030334, 41.79872753934637],
             [140.75493693351746, 41.79900747743603], [140.75478672981262, 41.79899947922184], [140.75464725494385, 41.798927495249465],
             [140.7545506954193, 41.79877552882002]]
lons, lats = zip(*goryokaku)
bounds = min(lons), max(lats), max(lons), min(lats)
fig, ax = plt.subplots(figsize=(8, 8))
draw_map(bounds, ax=ax)

ax.plot(lons, lats, c="black", linewidth=4, linestyle="dashed")
None
Zoom level 17 is chosen



png

# Royal observatory of Greenwich
bounds = (-0.0092, 51.481, 0.0099, 51.472)
fig, ax = plt.subplots(figsize=(9, 7.2))
draw_map(bounds, ax=ax)

observatory = (-0.0008717179298400879, 51.47732699342673)
ax.scatter(*observatory, marker="x", s=200)
ax.axvline(x=0, linestyle="dotted", linewidth=3, c="blue")
ax.text(observatory[0], observatory[1]-0.001, "Royal Observatory of Greenwich", ha="center",
        fontsize=20, bbox={"facecolor":"lightgreen", "alpha":0.75, "boxstyle":"round"})
None
Zoom level 15 is chosen



png

Obtain the image data as array

  • get_maparray((lon1, lat1, lon2, lat2)) returns:
    • The RGB image data as numpy array of shape (height, height, 3).
    • Tuple of (xmin, xmax, ymin, ymax) defining the area covered by the image.
from maptiles import get_maparray
# Royal observatory of Greenwich, again
bounds = (-0.0092, 51.481, 0.0099, 51.472)
img, extent = get_maparray(bounds)

print(img.shape)
print(extent)
Image.fromarray(img)
(338, 446, 3)
(-0.009226799011230469, 0.009913444519042969, 51.47197425351887, 51.481008725784044)


Zoom level 15 is chosen





png

Tiles

Predefined tiles

  • This package defines a number of map tiles for the convenience.
  • The available tiles are given by the predefined_tiles function.
  • get_tile function returns the predefined tile object (a named tuple).
  • The tile option of draw_map and get_maparray accepts the followings:
    • Name of a predefined tile.
    • URL string with {z}, {x}, {y} format parameters.
    • Tile object.
from maptiles import predefined_tiles, get_tile

list(predefined_tiles().keys())
['osm',
 'stadia_alidade_smooth_dark',
 'stadia_alidade_smooth',
 'stadia_outdoors',
 'stadia_osm_bright',
 'stamen_tonner',
 'stamen_terrain',
 'stamen_watercolor',
 'japangsi',
 'japangsi_pale',
 'japangsi_blank',
 'google',
 'google_roads',
 'google_streets',
 'google_terrain',
 'google_satellite',
 'google_satellite_hybrid',
 'google_h',
 'google_r',
 'google_t',
 'google_s',
 'google_y']
get_tile("osm")
Tile(name='OpenStreetMap, Standard', baseurl='https://tile.openstreetmap.org/{z}/{x}/{y}.png', copyright='© OpenStreetMap contributors', copyright_html='&copy; <a href="http://openstreetmap.org">OpenStreetMap</a> contributors')
# Arc de Triomphe in Paris
bounds = (2.2890830039978023, 48.87102408096251, 2.301185131072998, 48.87695157541353)
fig, ax = plt.subplots(1, 2, figsize=(13, 6))
draw_map(bounds, ax=ax[0], tile="google_streets")   # tile name
ax[0].set_title("Google Street")

draw_map(bounds, ax=ax[1], tile=get_tile("google_satellite")) # tile object
ax[1].set_title("Google Satellite")
fig.tight_layout()
None
Zoom level 16 is chosen
Zoom level 16 is chosen



png

Copyrights of the map tiles

  • This package only provides an interface to access and parse data from map tile servers.
  • The map data belong to the providers and they shall be used in compliant with their term of usage.
  • Examples of copyright messages are given for predefined tiles (Note: not official one).
  • Use get_tile function to use them.
from IPython.core.display import HTML

tile = get_tile("osm")
print(tile.copyright)
display(HTML(tile.copyright_html))

tile = get_tile("japangsi")
print(tile.copyright)
display(HTML(tile.copyright_html))

tile = get_tile("google")
print(tile.copyright)
display(HTML(tile.copyright_html))
© OpenStreetMap contributors

© OpenStreetMap contributors

© 国土地理院 | Geospatial Information Authority of Japan

© 国土地理院 | Geospatial Information Authority of Japan

© Google

© Google

# Add copyright message to the plot
bounds = [-20, 40, 55, -40]
tile = get_tile("osm")
fig, ax = plt.subplots(figsize=(7, 8.5))
draw_map(bounds, ax=ax, tile=tile)
bottom, right = ax.get_ylim()[0], ax.get_xlim()[1]
ax.text(right, bottom, tile.copyright, ha="right", va="bottom")
None
Zoom level 3 is chosen



png

Custom tiles

  • Any tile following the OSM's naming rule can be specified by a URL string with {x}, {y}, {z} parameters.
  • Alternatively, a tile object can be created with the Tile function.
from maptiles import Tile

# Mount Fuji, Japan
bounds = [138.53553771972656, 35.48024245154482, 138.9276123046875, 35.231598543453316]
fig, ax = plt.subplots(1, 2, figsize=(15, 5.6))

draw_map(bounds, ax=ax[0], tile="https://cyberjapandata.gsi.go.jp/xyz/english/{z}/{x}/{y}.png")
draw_map(bounds, ax=ax[1], tile=Tile("https://cyberjapandata.gsi.go.jp/xyz/seamlessphoto/{z}/{x}/{y}.jpg"))
None
Zoom level 11 is chosen
Zoom level 11 is chosen



png

Web Mercator projection

  • This package assumes that map tiles are Web Mercator projected.
  • The Web Mercator is a simplified version of Mercator projection and widely used by standard web maps currently, including the Google Map and OpenStreetMap.
  • The projection formula is the following: $$ \begin{align} x &= \frac{2^{z+7}}{\pi} (\lambda + \pi) \ y &= \frac{2^{z+7}}{\pi} \left(\pi - \mathrm{tanh}^{-1}(\mathrm{sin}; \phi)\right) \end{align} $$ where $\lambda, \phi$ are longitude and latitude in radians, and $x, y$ are pixel indices on the web map images.
  • Since the latitude conversion is non-linear, simply plotting (lon, lat) as (x, y) coordinates may deviate from the map already in the Web Mercator scale.
  • We may think of following three strategies to this issue:
StrategyProsConsParameters to draw_map
1.Plot lon-lat as-is on the same axes as imageSimple, works okay for small mapsPoints deviate for large maps
2.Plot lon-lat on a separate axes with Web-Mercator scalingCan plot with lon-lat, works for large mapsHarder to modify visuals due to multi-layer structurescaling=True
3.Plot after projecting coordinates to Web Mercator scaleSingle layer structure, works for large mapsExtra step for manual projection, axis grids are not intuitiveextent_crs="webmap"
- Strategy 1 is a simple solution and is recommended if the map area is small and approximation is accepted.
- Strategy 2 works for large maps and coding syntax stays simple. Customization of the visuals can be harder because the image and main plot objects are on separate layers (axes) that share the same bounds.
- Strategy 3 also works for large maps. Manual projection can be easily conducted using [pyproj](https://pypi.org/project/pyproj/) or [geopandas](https://pypi.org/project/geopandas/) libraries. The axis ticks are not intuitive, but one may add grid lines manually to achieve the desired visuals.
  • Examples below show how these strategies work on a small and a large map area.
# Small map example
# Giza's pyramid complex
import pyproj
bounds = [31.12743480300903, 29.9806997753276, 31.135662416839596, 29.971834892057622]
pyramids = ([[31.133075952529907, 31.135404109954834, 31.135404109954834, 31.133075952529907, 31.133075952529907],
             [29.978119871578528, 29.978119871578528, 29.980131892318944, 29.980131892318944, 29.978119871578528]], 
            [[31.129621267318726, 31.129648089408878, 31.131879687309265, 31.131858229637146, 31.129621267318726],
             [29.976925650617314, 29.97499720902611, 29.97501579659361, 29.976911710210015, 29.976925650617314]],
            [[31.127794682979587, 31.128843426704407, 31.128843426704407, 31.127794682979587, 31.127794682979587],
             [29.97205568264347, 29.97205568264347, 29.972931643919026, 29.972931643919026, 29.97205568264347]])
def _plot_lines(ax, lines):
    for p in lines:
        ax.plot(p[0], p[1])

fig, ax = plt.subplots(1, 3, figsize=(16, 6.4))

draw_map(bounds, ax=ax[0], tile="google_satellite")
_plot_lines(ax[0], pyramids)
ax[0].set_title("Plot lon-lat as-is (Works fine for small maps)")

draw_map(bounds, ax=ax[1], tile="google_satellite", scaling=True)
_plot_lines(ax[1], pyramids)
ax[1].set_title("Plot with Web Mercator scaling")

draw_map(bounds, ax=ax[2], tile="google_satellite", extent_crs="webmap")
t = pyproj.Transformer.from_crs("EPSG:4326", "EPSG:3857", always_xy=True)
pyramids_scaled = [t.transform(p[0], p[1]) for p in pyramids]
_plot_lines(ax[2], pyramids_scaled)
ax[2].set_title("Plot after projecting to Web Mercator scale")

fig.tight_layout()
Zoom level 16 is chosen
Zoom level 16 is chosen
Zoom level 16 is chosen



png

# Large map example
# Country polygon data from the world bank https://datacatalog.worldbank.org/search/dataset/0038272
# "World Country Polygons - Very High Definition"
import geopandas as gpd
df = gpd.read_file("WB_countries_Admin0_10m/WB_countries_Admin0_10m.shp")
print(df.crs) # check that the data is in WGS84 or EPSG:4326 system
australia = df[df.NAME_EN == "Australia"]
bounds = (110, -9, 160, -55)

fig, ax = plt.subplots(1, 3, figsize=(16, 6.2))

draw_map(bounds, ax=ax[0])
australia.plot(ax=ax[0], facecolor="none", aspect=None)
ax[0].set_title("Plot lon-lat as-is (Large deviation for large maps)")

draw_map(bounds, ax=ax[1], scaling=True)
australia.plot(ax=ax[1], facecolor="none", aspect=None)
ax[1].set_title("Plot with Web Mercator scaling")

draw_map(bounds, ax=ax[2], extent_crs="webmap")
australia.to_crs("EPSG:3857").plot(ax=ax[2], facecolor="none", aspect=None)
ax[2].set_title("Plot after projecting to Web Mercator scale")

fig.tight_layout()
epsg:4326


Zoom level 4 is chosen
Zoom level 4 is chosen
Zoom level 4 is chosen



png

Implementation details

Database

  • Downloaded image data are stored in the internal SQLite database at config.dbfile. The default location is ~/maptiles.db.
  • By reusing the stored images, we reduce the number of requests to the map tile servers.
  • If you want to delete existing data, either run initialize_database(replace=True) or simply delete the file.
  • One may change the database file location by the set_databasefile function.
import sqlite3
from maptiles import config, set_databasefile

# The database has only one table "tiles"
#   with columns "url" and "image".
with sqlite3.connect(config.dbfile) as conn:
    c = conn.cursor()
    data = c.execute("SELECT url FROM tiles LIMIT 10").fetchall()
print(data)
[('https://cyberjapandata.gsi.go.jp/xyz/english/11/1812/807.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1812/808.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1812/809.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1813/807.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1813/808.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1813/809.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1814/807.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1814/808.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1814/809.png',), ('https://cyberjapandata.gsi.go.jp/xyz/seamlessphoto/11/1812/807.jpg',)]
# Change the database location
set_databasefile("./temp.db")
print(config.dbfile)
./temp.db

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc