maptiles
Plot on webmap backgrounds.
Installation
# from pypi
$ pip3 install maptiles
# alternatively, from github
$ git clone https://github.com/kota7/maptiles.git --depth 1
$ pip3 install -U ./maptiles
Illustrative examples
Map image on matplotlib axes
draw_map((lon1, lat1, lon2, lat2))
draws the map image of the specified rectangle behind the matplotlib axes.- The function returns a tuple of an
Axes
(the same object if ax
argument is supplied) and AxesImage
object of the map image. - Visualizations can be added further using the matplotlib features.
Remarks:
- Longitude and latitudes must be given in angles. Internally longitudes are converted to
[-180 to 180)
scale. Latitudes must be in [-L, L]
with L=85.0511287798
. This L
is the north and south limit of Web Mercator projection. - Zoom level is automatically chosen by heuristic calculation. The
z
option allows for explicit specification. - Aspect ratio is automatically adjusted by heuristic calculation. The
aspect
option allows for explicit specification. - If
ax
is not given, then a new axes is created internally. - The axes will be scaled by Web Mercator formula comaptible with the image.
from maptiles import draw_map
bounds = [286.02288365364075, 40.761816905893156, 286.0257428884506, 40.7593098808893]
fig, ax = plt.subplots(figsize=(10, 10))
draw_map(bounds, ax=ax)
uniqlo = [286.02380633354187, 40.76029726182907]
uniqlo[0] -= 360
arrow_from = uniqlo[0] + 0.0001, uniqlo[1] - 0.0002
ax.annotate("UNIQLO IS HERE!", uniqlo, xytext=arrow_from, fontsize=25,
bbox={"facecolor": "white", "alpha":0.75, "boxstyle":"round"}, arrowprops={"width":1})
None
Zoom level 18 is chosen
goryokaku = [[140.7545506954193, 41.79877552882002], [140.7546043395996, 41.797391817910004], [140.7536494731903, 41.7962160400744],
[140.7536494731903, 41.79608006437536], [140.75378894805905, 41.79592009259535], [140.75480818748474, 41.79568013417667],
[140.75480818748474, 41.79524020807576], [140.75473308563232, 41.79524820675909], [140.7547116279602, 41.79520021464413],
[140.7548189163208, 41.79519221595479], [140.75482964515686, 41.7948002789552], [140.755033493042, 41.79467229900768],
[140.75620293617249, 41.79503224195874], [140.75687885284424, 41.794456332266776], [140.75702905654907, 41.79442433713216],
[140.75724363327026, 41.79444033470147], [140.75735092163086, 41.79449632616259], [140.75838088989255, 41.795648139652975],
[140.76006531715393, 41.79620004294831], [140.76016187667847, 41.796288027092395], [140.76021552085876, 41.79639200819787],
[140.7601833343506, 41.79651198618687], [140.75906753540036, 41.7976557650716], [140.75889587402344, 41.79899148100668],
[140.75873494148254, 41.79915144512023], [140.75859546661377, 41.79919143608624], [140.7584023475647, 41.79915144512023],
[140.7567822933197, 41.798759532332795], [140.7567822933197, 41.79872753934637], [140.75671792030334, 41.79872753934637],
[140.75493693351746, 41.79900747743603], [140.75478672981262, 41.79899947922184], [140.75464725494385, 41.798927495249465],
[140.7545506954193, 41.79877552882002]]
lons, lats = zip(*goryokaku)
bounds = min(lons), max(lats), max(lons), min(lats)
fig, ax = plt.subplots(figsize=(8, 8))
draw_map(bounds, ax=ax)
ax.plot(lons, lats, c="black", linewidth=4, linestyle="dashed")
None
Zoom level 17 is chosen
bounds = (-0.0092, 51.481, 0.0099, 51.472)
fig, ax = plt.subplots(figsize=(9, 7.2))
draw_map(bounds, ax=ax)
observatory = (-0.0008717179298400879, 51.47732699342673)
ax.scatter(*observatory, marker="x", s=200)
ax.axvline(x=0, linestyle="dotted", linewidth=3, c="blue")
ax.text(observatory[0], observatory[1]-0.001, "Royal Observatory of Greenwich", ha="center",
fontsize=20, bbox={"facecolor":"lightgreen", "alpha":0.75, "boxstyle":"round"})
None
Zoom level 15 is chosen
Obtain the image data as array
get_maparray((lon1, lat1, lon2, lat2))
returns:
- The RGB image data as numpy array of shape (height, height, 3).
- Tuple of
(xmin, xmax, ymin, ymax)
defining the area covered by the image.
from maptiles import get_maparray
bounds = (-0.0092, 51.481, 0.0099, 51.472)
img, extent = get_maparray(bounds)
print(img.shape)
print(extent)
Image.fromarray(img)
(338, 446, 3)
(-0.009226799011230469, 0.009913444519042969, 51.47197425351887, 51.481008725784044)
Zoom level 15 is chosen
Tiles
Predefined tiles
- This package defines a number of map tiles for the convenience.
- The available tiles are given by the
predefined_tiles
function. get_tile
function returns the predefined tile object (a named tuple).- The
tile
option of draw_map
and get_maparray
accepts the followings:
- Name of a predefined tile.
- URL string with
{z}
, {x}
, {y}
format parameters. Tile
object.
from maptiles import predefined_tiles, get_tile
list(predefined_tiles().keys())
['osm',
'stadia_alidade_smooth_dark',
'stadia_alidade_smooth',
'stadia_outdoors',
'stadia_osm_bright',
'stamen_tonner',
'stamen_terrain',
'stamen_watercolor',
'japangsi',
'japangsi_pale',
'japangsi_blank',
'google',
'google_roads',
'google_streets',
'google_terrain',
'google_satellite',
'google_satellite_hybrid',
'google_h',
'google_r',
'google_t',
'google_s',
'google_y']
get_tile("osm")
Tile(name='OpenStreetMap, Standard', baseurl='https://tile.openstreetmap.org/{z}/{x}/{y}.png', copyright='© OpenStreetMap contributors', copyright_html='© <a href="http://openstreetmap.org">OpenStreetMap</a> contributors')
bounds = (2.2890830039978023, 48.87102408096251, 2.301185131072998, 48.87695157541353)
fig, ax = plt.subplots(1, 2, figsize=(13, 6))
draw_map(bounds, ax=ax[0], tile="google_streets")
ax[0].set_title("Google Street")
draw_map(bounds, ax=ax[1], tile=get_tile("google_satellite"))
ax[1].set_title("Google Satellite")
fig.tight_layout()
None
Zoom level 16 is chosen
Zoom level 16 is chosen
Copyrights of the map tiles
- This package only provides an interface to access and parse data from map tile servers.
- The map data belong to the providers and they shall be used in compliant with their term of usage.
- Examples of copyright messages are given for predefined tiles (Note: not official one).
- Use
get_tile
function to use them.
from IPython.core.display import HTML
tile = get_tile("osm")
print(tile.copyright)
display(HTML(tile.copyright_html))
tile = get_tile("japangsi")
print(tile.copyright)
display(HTML(tile.copyright_html))
tile = get_tile("google")
print(tile.copyright)
display(HTML(tile.copyright_html))
© OpenStreetMap contributors
© OpenStreetMap contributors
© 国土地理院 | Geospatial Information Authority of Japan
© 国土地理院 | Geospatial Information Authority of Japan
© Google
© Google
bounds = [-20, 40, 55, -40]
tile = get_tile("osm")
fig, ax = plt.subplots(figsize=(7, 8.5))
draw_map(bounds, ax=ax, tile=tile)
bottom, right = ax.get_ylim()[0], ax.get_xlim()[1]
ax.text(right, bottom, tile.copyright, ha="right", va="bottom")
None
Zoom level 3 is chosen
Custom tiles
- Any tile following the OSM's naming rule can be specified by a URL string with
{x}
, {y}
, {z}
parameters. - Alternatively, a tile object can be created with the
Tile
function.
from maptiles import Tile
bounds = [138.53553771972656, 35.48024245154482, 138.9276123046875, 35.231598543453316]
fig, ax = plt.subplots(1, 2, figsize=(15, 5.6))
draw_map(bounds, ax=ax[0], tile="https://cyberjapandata.gsi.go.jp/xyz/english/{z}/{x}/{y}.png")
draw_map(bounds, ax=ax[1], tile=Tile("https://cyberjapandata.gsi.go.jp/xyz/seamlessphoto/{z}/{x}/{y}.jpg"))
None
Zoom level 11 is chosen
Zoom level 11 is chosen
Web Mercator projection
- This package assumes that map tiles are Web Mercator projected.
- The Web Mercator is a simplified version of Mercator projection and widely used by standard web maps currently, including the Google Map and OpenStreetMap.
- The projection formula is the following:
$$
\begin{align}
x &= \frac{2^{z+7}}{\pi} (\lambda + \pi) \
y &= \frac{2^{z+7}}{\pi} \left(\pi - \mathrm{tanh}^{-1}(\mathrm{sin}; \phi)\right)
\end{align}
$$
where $\lambda, \phi$ are longitude and latitude in radians, and $x, y$ are pixel indices on the web map images.
- Since the latitude conversion is non-linear, simply plotting (lon, lat) as (x, y) coordinates may deviate from the map already in the Web Mercator scale.
- We may think of following three strategies to this issue:
| Strategy | Pros | Cons | Parameters to draw_map |
---|
1. | Plot lon-lat as-is on the same axes as image | Simple, works okay for small maps | Points deviate for large maps | |
2. | Plot lon-lat on a separate axes with Web-Mercator scaling | Can plot with lon-lat, works for large maps | Harder to modify visuals due to multi-layer structure | scaling=True |
3. | Plot after projecting coordinates to Web Mercator scale | Single layer structure, works for large maps | Extra step for manual projection, axis grids are not intuitive | extent_crs="webmap" |
- Strategy 1 is a simple solution and is recommended if the map area is small and approximation is accepted.
- Strategy 2 works for large maps and coding syntax stays simple. Customization of the visuals can be harder because the image and main plot objects are on separate layers (axes) that share the same bounds.
- Strategy 3 also works for large maps. Manual projection can be easily conducted using [pyproj](https://pypi.org/project/pyproj/) or [geopandas](https://pypi.org/project/geopandas/) libraries. The axis ticks are not intuitive, but one may add grid lines manually to achieve the desired visuals.
- Examples below show how these strategies work on a small and a large map area.
import pyproj
bounds = [31.12743480300903, 29.9806997753276, 31.135662416839596, 29.971834892057622]
pyramids = ([[31.133075952529907, 31.135404109954834, 31.135404109954834, 31.133075952529907, 31.133075952529907],
[29.978119871578528, 29.978119871578528, 29.980131892318944, 29.980131892318944, 29.978119871578528]],
[[31.129621267318726, 31.129648089408878, 31.131879687309265, 31.131858229637146, 31.129621267318726],
[29.976925650617314, 29.97499720902611, 29.97501579659361, 29.976911710210015, 29.976925650617314]],
[[31.127794682979587, 31.128843426704407, 31.128843426704407, 31.127794682979587, 31.127794682979587],
[29.97205568264347, 29.97205568264347, 29.972931643919026, 29.972931643919026, 29.97205568264347]])
def _plot_lines(ax, lines):
for p in lines:
ax.plot(p[0], p[1])
fig, ax = plt.subplots(1, 3, figsize=(16, 6.4))
draw_map(bounds, ax=ax[0], tile="google_satellite")
_plot_lines(ax[0], pyramids)
ax[0].set_title("Plot lon-lat as-is (Works fine for small maps)")
draw_map(bounds, ax=ax[1], tile="google_satellite", scaling=True)
_plot_lines(ax[1], pyramids)
ax[1].set_title("Plot with Web Mercator scaling")
draw_map(bounds, ax=ax[2], tile="google_satellite", extent_crs="webmap")
t = pyproj.Transformer.from_crs("EPSG:4326", "EPSG:3857", always_xy=True)
pyramids_scaled = [t.transform(p[0], p[1]) for p in pyramids]
_plot_lines(ax[2], pyramids_scaled)
ax[2].set_title("Plot after projecting to Web Mercator scale")
fig.tight_layout()
Zoom level 16 is chosen
Zoom level 16 is chosen
Zoom level 16 is chosen
import geopandas as gpd
df = gpd.read_file("WB_countries_Admin0_10m/WB_countries_Admin0_10m.shp")
print(df.crs)
australia = df[df.NAME_EN == "Australia"]
bounds = (110, -9, 160, -55)
fig, ax = plt.subplots(1, 3, figsize=(16, 6.2))
draw_map(bounds, ax=ax[0])
australia.plot(ax=ax[0], facecolor="none", aspect=None)
ax[0].set_title("Plot lon-lat as-is (Large deviation for large maps)")
draw_map(bounds, ax=ax[1], scaling=True)
australia.plot(ax=ax[1], facecolor="none", aspect=None)
ax[1].set_title("Plot with Web Mercator scaling")
draw_map(bounds, ax=ax[2], extent_crs="webmap")
australia.to_crs("EPSG:3857").plot(ax=ax[2], facecolor="none", aspect=None)
ax[2].set_title("Plot after projecting to Web Mercator scale")
fig.tight_layout()
epsg:4326
Zoom level 4 is chosen
Zoom level 4 is chosen
Zoom level 4 is chosen
Implementation details
Database
- Downloaded image data are stored in the internal SQLite database at
config.dbfile
. The default location is ~/maptiles.db
. - By reusing the stored images, we reduce the number of requests to the map tile servers.
- If you want to delete existing data, either run
initialize_database(replace=True)
or simply delete the file. - One may change the database file location by the
set_databasefile
function.
import sqlite3
from maptiles import config, set_databasefile
with sqlite3.connect(config.dbfile) as conn:
c = conn.cursor()
data = c.execute("SELECT url FROM tiles LIMIT 10").fetchall()
print(data)
[('https://cyberjapandata.gsi.go.jp/xyz/english/11/1812/807.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1812/808.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1812/809.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1813/807.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1813/808.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1813/809.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1814/807.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1814/808.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1814/809.png',), ('https://cyberjapandata.gsi.go.jp/xyz/seamlessphoto/11/1812/807.jpg',)]
set_databasefile("./temp.db")
print(config.dbfile)
./temp.db