
Product
A New Design for GitHub PR Comments
We redesigned our GitHub PR comments to deliver clear, actionable security insights without adding noise to your workflow.
📘Documentation | 🛠️Installation | 👀Model Zoo | 🆕Update News | 🚀Ongoing Projects | 🤔Reporting Issues
English | 简体中文
MMEditing is an open-source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. Currently, MMEditing supports:
The master branch works with PyTorch 1.5+.
Some Demos:
Modular design
We decompose the editing framework into different components and one can easily construct a customized editor framework by combining different modules.
Support of multiple tasks in editing
The toolbox directly supports popular and contemporary inpainting, matting, super-resolution and generation tasks.
State of the art
The toolbox provides state-of-the-art methods in inpainting/matting/super-resolution/generation.
Note that MMSR has been merged into this repo, as a part of MMEditing. With elaborate designs of the new framework and careful implementations, hope MMEditing could provide better experience.
MMEditing maintains both master and 1.x branches. See more details in Branch Maintenance Plan.
0.16.1 was released in 24/02/2023:
pixel-unshuffle
.Please refer to changelog.md for details and release history.
A brand new version of MMEditing v1.0.0rc6 was released in 24/02/2023:
Find more new features in 1.x branch. Issues and PRs are welcome!
MMEditing depends on PyTorch and MMCV. Below are quick steps for installation.
Step 1. Install PyTorch following official instructions.
Step 2. Install MMCV with MIM.
pip3 install openmim
mim install mmcv-full
Step 3. Install MMEditing from source.
git clone https://github.com/open-mmlab/mmediting.git
cd mmediting
pip3 install -e .
Please refer to install.md for more detailed instruction.
Please see getting_started.md and demo.md for the basic usage of MMEditing.
Supported algorithms:
Please refer to model_zoo for more details.
We appreciate all contributions to improve MMEditing. Please refer to our contributing guidelines.
MMEditing is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new methods.
MMEditing currently has two branches, the master and 1.x branches, which go through the following three phases.
Phase | Time | Branch | description |
---|---|---|---|
RC Period | 2022/9/1 - 2022.12.31 | Release candidate code (1.x version) will be released on 1.x branch. Default master branch is still 0.x version | Master and 1.x branches iterate normally |
Compatibility Period | 2023/1/1 - 2023.12.31 | Default master branch will be switched to 1.x branch, and 0.x branch will correspond to 0.x version | We still maintain the old version 0.x, respond to user needs, but try not to introduce changes that break compatibility; master branch iterates normally |
Maintenance Period | From 2024/1/1 | Default master branch corresponds to 1.x version and 0.x branch is 0.x version | 0.x branch is in maintenance phase, no more new feature support; master branch is iterating normally |
If MMEditing is helpful to your research, please cite it as below.
@misc{mmediting2022,
title = {{MMEditing}: {OpenMMLab} Image and Video Editing Toolbox},
author = {{MMEditing Contributors}},
howpublished = {\url{https://github.com/open-mmlab/mmediting}},
year = {2022}
}
This project is released under the Apache 2.0 license.
FAQs
OpenMMLab Image and Video Editing Toolbox and Benchmark
We found that mmedit demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Product
We redesigned our GitHub PR comments to deliver clear, actionable security insights without adding noise to your workflow.
Product
Our redesigned Repositories page adds alert severity, filtering, and tabs for faster triage and clearer insights across all your projects.
Security News
Slopsquatting is a new supply chain threat where AI-assisted code generators recommend hallucinated packages that attackers register and weaponize.