
Research
/Security News
10 npm Typosquatted Packages Deploy Multi-Stage Credential Harvester
Socket researchers found 10 typosquatted npm packages that auto-run on install, show fake CAPTCHAs, fingerprint by IP, and deploy a credential stealer.
Mochi is a dynamically typed programming language for functional programming and actor-style programming.
Its interpreter is written in Python3. The interpreter translates a program written in Mochi to Python3's AST / bytecode.
Factorial
.. code:: python
    def factorial(n, m):
        if n == 1:
            m
        else:
            factorial(n - 1, n * m)
    factorial(10000, 1)
    # => 28462596809170545189064132121198688...
    # Or
    def factorial:
        n: factorial(n, 1)
        0, acc: acc
        n, acc: factorial(n - 1, acc * n)
        
    factorial(10000)
    # => 28462596809170545189064132121198688...
FizzBuzz
~~~~~~~~
.. code:: python
    def fizzbuzz(n):
        match [n % 3, n % 5]:
            [0, 0]: "fizzbuzz"
            [0, _]: "fizz"
            [_, 0]: "buzz"
            _: n
    range(1, 31)
    |> map(fizzbuzz)
    |> pvector()
    |> print()
Actor
~~~~~
.. code:: python
    def show():
        receive:
            message:
                print(message)
                show()
    actor = spawn(show)
    send('foo', actor)
    actor ! 'bar' # send('bar', actor)
    sleep(1)
    # -> foo
    # -> bar
    'foo' !> spawn(show)
    sleep(1)
    # -> foo
    ['foo', 'bar'] !&> spawn(show)
    # The meaning of the above is the same as the meaning of the following.
    # spawn(show) ! 'foo'
    # spawn(show) ! 'bar'
    sleep(1)
    # -> foo
    # -> bar
    def show_loop():
        receive:
            [tag, value]:
                print(tag, value)
                show_loop()
    actor2 = spawn(show_loop)
    actor2 ! ["bar", 2000]
    sleep(1)
    # -> bar 2000
    ['foo', 1000] !> spawn(show_loop)
    sleep(1)
    # -> foo 1000
    [['foo', 1000],['bar', 2000]] !&> spawn(show_loop)
    sleep(1)
    # -> foo 1000
    # -> bar 2000
Distributed Computing
.. code:: python
# comsumer.mochi
from mochi.actor.mailbox import KombuMailbox, ZmqInbox, SQSMailbox
def consumer():
    receive:
        'exit':
            print('exit!')
        other:
            print(other)
            consumer()
kombu_mailbox = KombuMailbox('sqs://<access_key_id>@<secret_access_key>:80//',
                             '<queue_name>',
                             dict(region='<region>'))
spawn_with_mailbox(consumer, kombu_mailbox)
zmq_mailbox = ZmqInbox('tcp://*:9999')
spawn_with_mailbox(consumer, zmq_mailbox)
sqs_mailbox = SQSMailbox('<queue_name>')
spawn_with_mailbox(consumer, sqs_mailbox)
wait_all()
.. code:: python
# producer.mochi
from mochi.actor.mailbox import KombuMailbox, ZmqOutbox, SQSMailbox
kombu_mailbox = KombuMailbox('sqs://<access_key_id>@<secret_access_key>:80//',
                             '<queue_name>',
                             dict(region='<region>'))
kombu_mailbox ! [1, 2, 3]
kombu_mailbox ! 'exit'
zmq_mailbox = ZmqOutbox('tcp://localhost:9999')
zmq_mailbox ! [4, 5, 6]
zmq_mailbox ! 'exit'
sqs_mailbox = SQSMailbox('<queue_name>')
sqs_mailbox ! [7, 8, 9]
sqs_mailbox ! 'exit'
Flask
.. code:: python
    from flask import Flask
    app = Flask('demo')
    @app.route('/')
    def hello():
        'Hello World!'
    app.run()
RxPY
~~~~
.. code:: python
    # usage: mochi -no-mp timer.mochi
    # original:
    # https://github.com/ReactiveX/RxPY/blob/master/examples/parallel/timer.py
    import rx
    import concurrent.futures
    import time
    seconds = [5, 1, 2, 4, 3]
    def sleep(t):
        time.sleep(t)
        return t
    def output(result):
        print('%d seconds' % result)
    with concurrent.futures.ProcessPoolExecutor(5) as executor:
        rx.Observable.from_(seconds)
                     .flat_map((s) -> executor.submit(sleep, s))
                     .subscribe(output)
    # 1 seconds
    # 2 seconds
    # 3 seconds
    # 4 seconds
    # 5 seconds
aif (Anaphoric macro)
.. code:: python
macro aif(test, true_expr, false_expr):
    quasi_quote:
        it = unquote(test)
        if it:
            unquote(true_expr)
        else:
            unquote(false_expr)
aif([], first(it), "empty")
# => "empty"
aif([10, 20], first(it), "empty")
# => 10
.. code:: sh
$ pip3 install mochi
$ pip3 install flask Flask-RESTful Pillow RxPY  # to run the examples
Optional Installation
.. code:: sh
    $ pip3 install flask Flask-RESTful Pillow RxPY  # to run the examples
    $ pip3 install pyzmq # to use ZmqInbox and ZmqOutbox
    $ pip3 install kombu # to use KombuMailbox
    $ pip3 install boto # to use SQS as transport of KombuMailbox
    $ pip3 install boto3 # to use SQSMailbox
Th error of the following may occur when you run Mochi on PyPy.
..
    ImportError: Importing zmq.backend.cffi failed with version mismatch, 0.8.2 != 0.9.2
In this case, please change the version of cffi to 0.8.2 using pip on PyPy.
.. code:: sh
    $ pip3 uninstall cffi
    $ pip3 install cffi==0.8.2
Usage
-----
REPL
~~~~
.. code:: sh
    $ mochi
    >>>
loading and running a file
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: sh
    $ cat kinako.mochi
    print('kinako')
    $ mochi kinako.mochi
    kinako
    $ mochi -no-mp kinako.mochi  # not apply eventlet's monkey patching
    kinako
byte compilation
~~~~~~~~~~~~~~~~
.. code:: sh
    $ mochi -c kinako.mochi > kinako.mochic
running a byte-compiled file
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: sh
    $ mochi -e kinako.mochic
    kinako
    $ mochi -e -no-mp kinako.mochic  # not apply eventlet's monkey patching
    kinako
generating .pyc
~~~~~~~~~~~~~~~
.. code:: sh
    $ ls
    kagami.mochi
    $ cat kagami.mochi
    print('kagami')
    $ mochi
    >>> import kagami
    kagami
    >>> exit()
    $ ls
    kagami.mochi kagami.pyc
    $ python3 kagami.pyc
    kagami
Or
.. code:: sh
    $ mochi -pyc kagami.mochi > kagami.pyc
    $ python3 kagami.pyc
    kagami
    $ mochi -pyc -no-mp kagami.mochi > kagami.pyc  # not apply eventlet's monkey patching
    $ python3 kagami.pyc
    kagami
Examples for each feature
-------------------------
Persistent data structures
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: python
    [1, 2, 3]
    # => pvector([1, 2, 3])
    v(1, 2, 3)
    # => pvector([1, 2, 3])
    vec = [1, 2, 3]
    vec2 = vec.set(0, 8)
    # => pvector([8, 2, 3]
    vec
    # => pvector([1, 2, 3])
    [x, y, z] = vec
    x # => 1
    y # => 2
    z # => 3
    get(vec, 0) # => 1
    get(vec, 0, 2) # => [1, 2]
    vec[0] # => 1
    vec[0:2] # => [1, 2]
    {'x': 100, 'y': 200}
    # => pmap({'y': 200, 'x': 100})
    ma = {'x': 100, 'y': 200}
    ma.get('x') # => 100
    ma.x # => 100
    ma['x'] # => 100
    ma2 = ma.set('x', 10000)
    # => pmap({'y': 200, 'x': 10000})
    ma # => pmap({'y': 200, 'x': 100})
    get(ma, 'y') # => 200
    ma['y'] # => 200
    m(x=100, y=200)
    # => pmap({'y': 200, 'x': 100})
    s(1, 2, 3)
    # => pset([1, 2, 3])
    b(1, 2, 3)
    # => pbag([1, 2, 3])
Function definitions
~~~~~~~~~~~~~~~~~~~~
.. code:: python
    def hoge(x):
        'hoge' + str(x)
    hoge(3)
    # => hoge3
Pattern matching
~~~~~~~~~~~~~~~~
.. code:: python
    lis = [1, 2, 3]
    # Sequence pattern
    match lis:
        [1, 2, x]: x
        _: None
    # => 3
    match lis:
        [1, &rest]: rest
        _: None
    # => pvector([2, 3])
    foo_map = {'foo' : 'bar'}
    # Mapping pattern
    match foo_map:
        {'foo' : value}: value
        _: None
    # => 'bar'
    # Type pattern
    # <name of variable refers to type> <pattern>: <action>
    match 10:
        int x: 'int'
        float x: 'float'
        str x: 'str'
        bool x: 'bool'
        _: 'other'
    # => 'int'
    match [1, 2, 3]:
        [1, str x, 3]: 'str'
        [1, int x, 3]: 'int'
        _: 'other'
    # => 'int'
    num = union(int, float)
    vector nums[num]
    vector strs[str]
    match nums([1, 2, 3]):
        nums[x, y, z]: z
        strs[x, y, z]: x
    # => 3
    Positive = predicate(-> $1 > 0)
    Even = predicate(-> $1 % 2 == 0)
    EvenAndPositive = predicate(-> ($1 % 2 == 0) and ($1 >= 0)) 
    match 10:
        EvenAndPositive n: str(n) + ':Even and Positive'
        Even n: str(n) + ':Even'
        Positive n: str(n) + ':Positive'
    # => 10:Even and Positive
    # Or pattern
    match ['foo', 100]:
        ['foo' or 'bar', value]: value
        _: 10000
    # => 100
    match ['foo', 100]:
        [str x or int x, value]: value
        _: 10000
    # => 100
    # Record pattern
    record Person(name, age)
    foo = Person('foo', 32)
    match foo:
        Person('bar', age):
            'bar:' + str(age)
        Person('foo', age):
            'foo:' + str(age)
        _: None
    # => 'foo:32'
Records
~~~~~~~
.. code:: python
    record Mochi
    record AnkoMochi(anko) < Mochi
    record KinakoMochi(kinako) < Mochi
    anko_mochi = AnkoMochi(anko=3)
    isinstance(anko_mochi, Mochi)
    # => True
    isinstance(anko_mochi, AnkoMochi)
    # => True
    isinstance(anko_mochi, KinakoMochi)
    # => False
    match anko_mochi:
        KinakoMochi(kinako): 'kinako ' * kinako + ' mochi'
        AnkoMochi(anko): 'anko ' * anko + 'mochi'
        Mochi(_): 'mochi'
    # => 'anko anko anko mochi'
    record Person(name, age):
        def show(self):
            print(self.name + ': ' + self.age)
    foo = Person('foo', '32')
    foo.show()
    # -> foo: 32
    # runtime type checking
    record Point(x:int, y:int, z:optional(int))
    Point(1, 2, None)
    # => Point(x=1, y=2, z=None)
    Point(1, 2, 3)
    # => Point(x=1, y=2, z=3)
    Point(1, None, 3)
    # => TypeError
Bindings
~~~~~~~~
.. code:: python
    x = 3000
    # => 3000
    [a, b] = [1, 2]
    a
    # => 1
    b
    # => 2
    [c, &d] = [1, 2, 3]
    c
    # => 1
    d
    # => pvector([2, 3])
Data types, like algebraic data types
.. code:: python
data Point:
    Point2D(x, y)
    Point3D(x, y, z)
# The meaning of the above is the same as the meaning of the following.
# record Point
# record Point2D(x, y) < Point
# record Point3D(x, y, z) < Point
p1 = Point2D(x=1, y=2)
# => Point2D(x=1, y=2)
p2 = Point2D(3, 4)
# => Point2D(x=3, y=4)
p1.x
# => 1
Pattern-matching function definitions
.. code:: python
    data Point:
        Point2D(x, y)
        Point3D(x, y, z)
    def offset:
        Point2D(x1, y1), Point2D(x2, y2):
            Point2D(x1 + x2, y1 + y2)
        Point3D(x1, y1, z1), Point3D(x2, y2, z2):
            Point3D(x1 + x2, y1 + y2, z1 + z2)
        _: None
    offset(Point2D(1, 2), Point2D(3, 4))
    # => Point2D(x=4, y=6)
    offset(Point3D(1, 2, 3), Point3D(4, 5, 6))
    # => Point3D(x=5, y=7, z=9)
    def show:
        int x, message: print('int', x, message)
        float x, message: print('float', x, message)
        _: None
    show(1.0, 'msg')
    # -> float 1.0 msg
    # => None
    FileMode = options('r', 'w', 'a', 'r+', 'w+', 'a+')
    def open_file:
        str path, FileMode mode: 
            open(path, mode)
        str path:
            open(path, 'r')
Anonymous function
~~~~~~~~~~~~~~~~~~
.. code:: python
    # Arrow expression.
    add = (x, y) -> x + y
    add(1, 2)
    # => 3
    add = -> $1 + $2
    add(1, 2)
    # => 3
    foo = (x, y) ->
        if x == 0:
            y
        else:
            x
    foo(1, 2)
    # => 1
    foo(0, 2)
    # => 2
    pvector(map(-> $1 * 2, [1, 2, 3]))
    # => pvector([2, 4, 6])
Pipeline operator
~~~~~~~~~~~~~~~~~
.. code:: python
    add = -> $1 + $2
    2 |> add(10) |> add(12)
    # => 24
    None |>? add(10) |>? add(12)
    # => None
Lazy sequences
~~~~~~~~~~~~~~
.. code:: python
    def fizzbuzz(n):
        match [n % 3, n % 5]:
            [0, 0]: "fizzbuzz"
            [0, _]: "fizz"
            [_, 0]: "buzz"
            _: n
    result = range(1, 31) |> map(fizzbuzz)
    pvector(result)
    # => pvector([1, 2, fizz, 4, 'buzz', 'fizz', 7, 8, 'fizz', 'buzz', 11, 'fizz', 13, 14, 'fizzbuzz', 16, 17, 'fizz', 19, 'buzz', 'fizz', 22, 23, 'fizz', 'buzz', 26, 'fizz', 28, 29, 'fizzbuzz'])
    pvector(result)
    # => pvector([])
    pvector(result)
    # => pvector([])
    # Iterator -> lazyseq
    lazy_result = range(1, 31) |> map(fizzbuzz) |> lazyseq()
    pvector(lazy_result)
    # => pvector([1, 2, fizz, 4, 'buzz', 'fizz', 7, 8, 'fizz', 'buzz', 11, 'fizz', 13, 14, 'fizzbuzz', 16, 17, 'fizz', 19, 'buzz', 'fizz', 22, 23, 'fizz', 'buzz', 26, 'fizz', 28, 29, 'fizzbuzz'])
    pvector(lazy_result)
    # => pvector([1, 2, fizz, 4, 'buzz', 'fizz', 7, 8, 'fizz', 'buzz', 11, 'fizz', 13, 14, 'fizzbuzz', 16, 17, 'fizz', 19, 'buzz', 'fizz', 22, 23, 'fizz', 'buzz', 26, 'fizz', 28, 29, 'fizzbuzz'])
    pvector(lazy_result)
    # => pvector([1, 2, fizz, 4, 'buzz', 'fizz', 7, 8, 'fizz', 'buzz', 11, 'fizz', 13, 14, 'fizzbuzz', 16, 17, 'fizz', 19, 'buzz', 'fizz', 22, 23, 'fizz', 'buzz', 26, 'fizz', 28, 29, 'fizzbuzz'])
Trailing closures
~~~~~~~~~~~~~~~~~
.. code:: python
    # The following trailing closure expression is passed to a function as the function’s first argument.
    result = map([1, 2, 3]) ->
        print($1)
        $1 * 2
    print(doall(result))
    # -> 1
    # -> 2
    # -> 3
    # => pvector([2, 4, 6])
    def foreach(closure, seq):
        doall(filter(closure, seq))
    # The following trailing closure expression is passed to a function as the function’s first argument.
    foreach([1, 2, 3]) (item) ->
        new_item = item * 100
        print(new_item)
    # -> 100
    # -> 200
    # -> 300
    # => pvector([])
    # Or
    def foreach(seq, closure):
        doall(filter(closure, seq))
    # The following trailing closure expression is passed to a function as the function’s final argument.
    foreach([1, 2, 3]) @ (item) ->
        new_item = item * 100
        print(new_item)
    # -> 100
    # -> 200
    # -> 300
    # => pvector([])
Short form for keyword arguments and dict keys
.. code:: python
def foo(a, b, c):
    a + b + c
    
a = 1
b = 2
c = 3
# This is the same as foo(a=a, b=b, c=c)
foo(=a, =b, =c))
# => 6
# This is the same as {'a': a, 'b': b}
{=a, =b}
# => pmap({'a': 1, 'b': 2})
Macros
.. code:: python
    macro rest_if_first_is_true(first, &args):
         match first:
             quote(True): quasi_quote(v(unquote_splicing(args)))
             _: quote(False)
    rest_if_first_is_true(True, 1, 2, 3)
    # => pvector([1, 2, 3])
    rest_if_first_is_true("foo", 1, 2, 3)
    # => False
    macro pipeline(&args):
        [Symbol('|>')] + args
    pipeline([1, 2, 3],
             map(-> $1 * 2),
             filter(-> $1 != 2),
             pvector())
    # => pvector([4, 6])
Including a file at compile time
.. code:: sh
$ cat anko.mochi
x = 10000
y = 20000
.. code:: python
require 'anko.mochi'
x
# => 10000
x = 30000
require 'anko.mochi' # include once at compile time
x
# => 30000
Module
.. code:: python
    module Math:
        export add, sub
        
        def add(x, y):
            x + y
        
        def sub(x, y):
            x - y
    Math.add(1, 2)
    # => 3
.. code:: sh
    $ cat foobar.mochi
    foo = 'foo'
    bar = 'bar'
.. code:: python
    require 'foobar.mochi'
    [foo, bar]
    # => pvector(['foo', 'bar'])
    foo = 'foofoofoo'
    module X:
        export foobar
        require 'foobar.mochi'
        def foobar:
            [foo, bar]
    X.foobar()
    # => pvector(['foo', 'bar'])
    [foo, bar]
    # => pvector(['foofoofoo', 'bar'])
TODO
----
-  Improve documentation
-  Improve parsing
-  Support type annotation
License
-------
MIT License
Contributors
------------
https://github.com/i2y/mochi/graphs/contributors
FAQs
Dynamically typed functional programming language
We found that mochi demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Research
/Security News
Socket researchers found 10 typosquatted npm packages that auto-run on install, show fake CAPTCHAs, fingerprint by IP, and deploy a credential stealer.

Product
Socket Firewall Enterprise is now available with flexible deployment, configurable policies, and expanded language support.

Security News
Open source dashboard CNAPulse tracks CVE Numbering Authorities’ publishing activity, highlighting trends and transparency across the CVE ecosystem.