Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

nni

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

nni

Neural Network Intelligence project

  • 3.0
  • PyPI
  • Socket score

Maintainers
1

MIT licensed Issues Bugs Pull Requests Version Documentation Status

NNI automates feature engineering, neural architecture search, hyperparameter tuning, and model compression for deep learning. Find the latest features, API, examples and tutorials in our official documentation (简体中文版点这里).

What's NEW!  

Installation

See the NNI installation guide to install from pip, or build from source.

To install the current release:

$ pip install nni

To update NNI to the latest version, add --upgrade flag to the above commands.

NNI capabilities in a glance

Hyperparameter Tuning Neural Architecture Search Model Compression
Algorithms
Supported Frameworks Training Services Tutorials
Supports
  • PyTorch
  • TensorFlow
  • Scikit-learn
  • XGBoost
  • LightGBM
  • MXNet
  • Caffe2
  • More...
webui

Resources

Contribution guidelines

If you want to contribute to NNI, be sure to review the contribution guidelines, which includes instructions of submitting feedbacks, best coding practices, and code of conduct.

We use GitHub issues to track tracking requests and bugs. Please use NNI Discussion for general questions and new ideas. For questions of specific use cases, please go to Stack Overflow.

Participating discussions via the following IM groups is also welcomed.

GitterWeChat
imageORimage

Over the past few years, NNI has received thousands of feedbacks on GitHub issues, and pull requests from hundreds of contributors. We appreciate all contributions from community to make NNI thrive.

Test status

Essentials

TypeStatus
Fast testBuild Status
Full test - HPOBuild Status
Full test - NASBuild Status
Full test - compressionBuild Status

Training services

TypeStatus
Local - linuxBuild Status
Local - windowsBuild Status
Remote - linux to linuxBuild Status
Remote - windows to windowsBuild Status
OpenPAIBuild Status
FrameworkcontrollerBuild Status
KubeflowBuild Status
HybridBuild Status
AzureMLBuild Status

Targeting at openness and advancing state-of-art technology, Microsoft Research (MSR) had also released few other open source projects.

  • OpenPAI : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
  • FrameworkController : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
  • MMdnn : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
  • SPTAG : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.
  • nn-Meter : An accurate inference latency predictor for DNN models on diverse edge devices.

We encourage researchers and students leverage these projects to accelerate the AI development and research.

License

The entire codebase is under MIT license.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc