You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP โ†’
Socket
Book a DemoInstallSign in
Socket

ocr-document-converter

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ocr-document-converter

Enterprise-grade OCR and document conversion tool with dual OCR engines

3.1.0
pipPyPI
Maintainers
1

OCR Document Converter ๐Ÿ”๐Ÿ“„

OCR Document Converter Python Platform License Tests Version

Transform any document into searchable, editable text with enterprise-grade OCR technology

Designed and Built by Beau Lewis

Enterprise-Grade OCR โ€ข Multi-Language โ€ข AI-Powered โ€ข Cross-Platform โ€ข Professional GUI

A powerful, enterprise-ready OCR (Optical Character Recognition) document converter with advanced image processing, multi-language support, and intelligent text extraction. Features Tesseract and EasyOCR engines, batch processing, and professional deployment options.

๐Ÿš€ Quick Start โ€ข โœจ Features โ€ข ๐Ÿ“„ Formats โ€ข ๐Ÿ› ๏ธ Installation โ€ข โš™๏ธ Configuration โ€ข ๐Ÿ“– Usage โ€ข ๐Ÿ“ Project Structure โ€ข ๐Ÿค Contributing

๐ŸŽฏ What is OCR Document Converter?

OCR Document Converter is a professional-grade, enterprise-ready OCR application that extracts text from images and documents using advanced AI-powered engines. Built with dual OCR backends (Tesseract & EasyOCR), intelligent preprocessing, and multi-language support for maximum accuracy.

๐ŸŒŸ Why Choose OCR Document Converter?

  • ๐Ÿ” Dual OCR Engines: Tesseract 5.0+ and EasyOCR for maximum accuracy
  • ๐ŸŒ Multi-Language: Support for 80+ languages with automatic detection
  • ๐Ÿš€ Lightning Fast: Multi-threaded processing with intelligent caching
  • ๐ŸŽฏ Universal Format Support: JPG, PNG, TIFF, BMP, GIF, WebP, PDF
  • ๐Ÿ–ฅ๏ธ Cross-Platform: Native integration on Windows, macOS, and Linux
  • ๐ŸŽจ Modern GUI: Professional interface with drag-and-drop support
  • ๐Ÿ“Š Batch Processing: Handle multiple files simultaneously
  • โšก Smart Preprocessing: Automatic image enhancement and optimization
  • ๐Ÿ’พ Intelligent Caching: 24-hour file caching system for efficiency
  • ๐Ÿ”ง Zero External APIs: Works completely offline

๐Ÿš€ Quick Start

๐Ÿ–ฑ๏ธ Easiest Way - Automated Setup

  • Clone this repository:

    git clone https://github.com/Beaulewis1977/quick_ocr_doc_converter.git
    cd quick_ocr_doc_converter
    
  • Run the automated setup:

    python setup_ocr_environment.py
    
  • Launch the application:

    python universal_document_converter_ocr.py
    

    Or use one of the launchers:

    • Windows: Double-click run_ocr_converter.bat or โšก Quick Launch OCR.bat
    • Cross-platform: python launch_ocr.py
    • CLI: python cli.py input.pdf -o output.txt -t txt --ocr

๐Ÿ”ง Manual Installation

  • Install Python dependencies:

    pip install -r requirements.txt
    
  • Install Tesseract OCR:

    • Windows: Download from GitHub Releases
    • macOS: brew install tesseract
    • Linux: sudo apt-get install tesseract-ocr
  • Install additional language packs (optional):

    # Example for German and French
    sudo apt-get install tesseract-ocr-deu tesseract-ocr-fra
    

โœจ Features

๐Ÿ” OCR Engines

  • Tesseract 5.0+: Industry-standard OCR with 100+ language support
  • EasyOCR: AI-powered neural network OCR for enhanced accuracy
  • Automatic Engine Selection: Chooses best engine based on image characteristics
  • Fallback System: Switches engines automatically if one fails

๐ŸŒ Multi-Language Support

  • 80+ Languages: Including English, Spanish, French, German, Chinese, Japanese, Arabic, Russian
  • Automatic Language Detection: Smart detection of document language
  • Mixed Language Documents: Handles documents with multiple languages
  • Custom Language Models: Support for specialized OCR models

๐ŸŽจ Image Processing

  • Smart Preprocessing: Automatic noise reduction, contrast enhancement
  • Format Detection: Intelligent handling of different image formats
  • Resolution Optimization: Automatic DPI adjustment for best OCR results
  • Rotation Correction: Automatic text orientation detection and correction
  • Skew Correction: Fixes tilted or skewed documents

๐Ÿš€ Performance & Efficiency

  • Multi-Threading: Parallel processing for batch operations
  • Intelligent Caching: 24-hour file caching system
  • Memory Optimization: Efficient handling of large files
  • Progress Tracking: Real-time progress indicators
  • Background Processing: Non-blocking operations

๐ŸŽฏ User Interface

  • Professional GUI: Modern, intuitive interface
  • Drag & Drop: Easy file handling
  • Batch Processing: Multiple file selection and processing
  • Settings Panel: Comprehensive configuration options
  • Preview Mode: View processed results before saving
  • Export Options: Multiple output formats and destinations

๐Ÿ“„ Supported Formats

๐Ÿ“ฅ Input Formats

FormatExtensionDescriptionOCR Quality
JPEG.jpg, .jpegStandard photo formatโญโญโญโญ
PNG.pngLossless image formatโญโญโญโญโญ
TIFF.tiff, .tifHigh-quality document formatโญโญโญโญโญ
BMP.bmpWindows bitmap formatโญโญโญโญ
GIF.gifAnimated/static imagesโญโญโญ
WebP.webpModern web formatโญโญโญโญ
PDF.pdfDocument format (image-based)โญโญโญโญโญ

๐Ÿ“ค Output Formats

  • Plain Text (.txt) - Clean, formatted text
  • Rich Text (.rtf) - Formatted text with styling
  • Microsoft Word (.docx) - Professional documents
  • PDF (.pdf) - Searchable PDF with OCR layer
  • JSON (.json) - Structured data with metadata
  • CSV (.csv) - Tabular data extraction

โš™๏ธ Configuration

๐Ÿ”ง OCR Engine Settings

Tesseract Configuration

# tesseract_config.json
{
    "engine": "tesseract",
    "language": "eng+fra+deu",  # Multiple languages
    "oem": 3,                   # OCR Engine Mode (0-3)
    "psm": 6,                   # Page Segmentation Mode (0-13)
    "dpi": 300,                 # Target DPI for processing
    "preprocessing": {
        "denoise": true,
        "contrast_enhance": true,
        "rotation_correction": true
    }
}

EasyOCR Configuration

# easyocr_config.json
{
    "engine": "easyocr",
    "languages": ["en", "fr", "de"],
    "gpu": false,               # Use GPU acceleration
    "batch_size": 1,
    "workers": 0,               # Number of worker threads
    "confidence_threshold": 0.5
}

๐ŸŽ›๏ธ Application Settings

GUI Configuration

# gui_settings.json
{
    "theme": "modern",          # UI theme
    "auto_preview": true,       # Show preview automatically
    "batch_size": 10,          # Max files per batch
    "output_directory": "./output",
    "cache_duration": 24,       # Hours to keep cache
    "language_detection": true,
    "progress_notifications": true
}

Processing Settings

# processing_config.json
{
    "max_threads": 4,           # Parallel processing threads
    "memory_limit": "2GB",      # Maximum memory usage
    "timeout": 300,             # Processing timeout (seconds)
    "retry_attempts": 3,        # Retry failed operations
    "temp_directory": "./temp",
    "log_level": "INFO"         # DEBUG, INFO, WARNING, ERROR
}

๐ŸŒ Language Configuration

Available Languages

# Install additional Tesseract language packs
sudo apt-get install tesseract-ocr-[LANG]

# Common language codes:
# eng (English), fra (French), deu (German), spa (Spanish)
# chi_sim (Chinese Simplified), jpn (Japanese), ara (Arabic)
# rus (Russian), kor (Korean), hin (Hindi), por (Portuguese)

Language Detection Settings

# language_config.json
{
    "auto_detect": true,
    "fallback_language": "eng",
    "confidence_threshold": 0.8,
    "supported_languages": [
        "eng", "fra", "deu", "spa", "ita", "por",
        "rus", "chi_sim", "jpn", "kor", "ara", "hin"
    ]
}

๐Ÿ“– Usage

๐Ÿ–ฅ๏ธ GUI Application

  • Launch the application:

    python universal_document_converter_ocr.py
    
  • Basic OCR Process:

    • Drag and drop files into the application window
    • Select OCR engine (Tesseract/EasyOCR/Auto)
    • Choose output format and destination
    • Click "Start OCR" to begin processing
  • Batch Processing:

    • Select multiple files using Ctrl+Click
    • Configure batch settings in the Settings panel
    • Monitor progress in real-time
    • Review results in the output directory

๐Ÿ’ป Command Line Interface (CLI)

The OCR Document Converter includes a powerful CLI for automation and integration.

Basic Usage

# Single file OCR
python cli.py document.jpg -o result.txt -t txt --ocr

# Convert without OCR
python cli.py document.pdf -o document.md -t md

# Batch processing
python cli.py *.jpg -o converted/ -t txt --ocr

# Specify OCR language
python cli.py scan.png -o text.txt --ocr --language fra

VFP9/VB6 Integration via CLI

# For VFP9/VB6 users - simple command line execution
python cli.py input.md -o output.rtf -t rtf --quiet

Advanced Options

# Full command with all options
python ocr_engine/ocr_engine.py \
    --input document.pdf \
    --output result.docx \
    --engine easyocr \
    --language en,fr,de \
    --confidence 0.7 \
    --preprocessing \
    --format docx \
    --dpi 300

Command Line Arguments

ArgumentDescriptionExample
--inputInput file/patterndocument.jpg, "*.png"
--outputOutput fileresult.txt
--output-dirOutput directory./results/
--engineOCR enginetesseract, easyocr, auto
--languageLanguage codeseng, eng+fra, en,fr,de
--confidenceConfidence threshold0.5 to 1.0
--formatOutput formattxt, docx, pdf, json
--dpiTarget DPI150, 300, 600
--preprocessingEnable preprocessingFlag (no value)
--batch-sizeBatch processing size5, 10, 20
--threadsNumber of threads1, 4, 8

๐Ÿ”ง Python API

Basic OCR

from ocr_engine import OCREngine

# Initialize OCR engine
ocr = OCREngine(engine='tesseract', language='eng')

# Process single file
result = ocr.extract_text('document.jpg')
print(result.text)

# Save to file
ocr.save_result(result, 'output.txt', format='txt')

Advanced Usage

from ocr_engine import OCREngine, OCRConfig

# Custom configuration
config = OCRConfig(
    engine='easyocr',
    languages=['en', 'fr'],
    confidence_threshold=0.8,
    preprocessing=True,
    dpi=300
)

# Initialize with config
ocr = OCREngine(config=config)

# Batch processing
files = ['doc1.jpg', 'doc2.png', 'doc3.pdf']
results = ocr.process_batch(files)

for file, result in results.items():
    print(f"{file}: {result.confidence:.2f}")
    ocr.save_result(result, f"{file}.txt")

Error Handling

from ocr_engine import OCREngine, OCRError

try:
    ocr = OCREngine()
    result = ocr.extract_text('document.jpg')
    
    if result.confidence < 0.5:
        print("Warning: Low confidence OCR result")
    
except OCRError as e:
    print(f"OCR Error: {e}")
except FileNotFoundError:
    print("Input file not found")
except Exception as e:
    print(f"Unexpected error: {e}")

๐Ÿ“ Project Structure

ocr_document_converter/
โ”œโ”€โ”€ ๐Ÿ“ ocr_engine/                    # Core OCR engine modules
โ”‚   โ”œโ”€โ”€ __init__.py                   # Package initialization
โ”‚   โ”œโ”€โ”€ ocr_engine.py                 # Main OCR engine class
โ”‚   โ”œโ”€โ”€ ocr_engine_minimal.py         # Lightweight OCR implementation
โ”‚   โ”œโ”€โ”€ image_processor.py            # Image preprocessing utilities
โ”‚   โ”œโ”€โ”€ format_detector.py            # File format detection
โ”‚   โ””โ”€โ”€ ocr_integration.py            # Integration layer
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ gui/                           # GUI components
โ”‚   โ”œโ”€โ”€ universal_document_converter_ocr.py      # Main GUI application
โ”‚   โ”œโ”€โ”€ universal_document_converter_enhanced.py # Enhanced GUI features
โ”‚   โ””โ”€โ”€ ocr_gui_integration.py        # GUI-OCR integration
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ tests/                         # Test suite
โ”‚   โ”œโ”€โ”€ test_ocr_integration.py       # Integration tests
โ”‚   โ”œโ”€โ”€ validate_ocr_integration.py   # Validation scripts
โ”‚   โ””โ”€โ”€ test_data/                    # Sample test files
โ”‚       โ”œโ”€โ”€ sample_document.jpg
โ”‚       โ”œโ”€โ”€ multi_language.png
โ”‚       โ””โ”€โ”€ low_quality.pdf
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ config/                        # Configuration files
โ”‚   โ”œโ”€โ”€ tesseract_config.json         # Tesseract settings
โ”‚   โ”œโ”€โ”€ easyocr_config.json          # EasyOCR settings
โ”‚   โ”œโ”€โ”€ gui_settings.json            # GUI preferences
โ”‚   โ””โ”€โ”€ language_config.json         # Language settings
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ output/                        # Default output directory
โ”œโ”€โ”€ ๐Ÿ“ temp/                          # Temporary processing files
โ”œโ”€โ”€ ๐Ÿ“ cache/                         # OCR result cache
โ”œโ”€โ”€ ๐Ÿ“ logs/                          # Application logs
โ”‚
โ”œโ”€โ”€ ๐Ÿ“„ requirements.txt               # Python dependencies
โ”œโ”€โ”€ ๐Ÿ“„ setup_ocr_environment.py       # Automated setup script
โ”œโ”€โ”€ ๐Ÿ“„ README.md                      # This comprehensive guide
โ”œโ”€โ”€ ๐Ÿ“„ OCR_README.md                  # Technical OCR documentation
โ”œโ”€โ”€ ๐Ÿ“„ OCR_INTEGRATION_COMPLETE.md    # Integration completion notes
โ”œโ”€โ”€ ๐Ÿ“„ .gitignore                     # Git ignore rules
โ””โ”€โ”€ ๐Ÿ“„ LICENSE                        # MIT License

๐Ÿ“‹ Key Files Description

FilePurposeKey Features
ocr_engine/ocr_engine.pyMain OCR processingDual engine support, batch processing
universal_document_converter_ocr.pyGUI applicationDrag-drop, settings panel, progress tracking
setup_ocr_environment.pyAutomated installerDependencies, Tesseract, language packs
test_ocr_integration.pyComprehensive testsUnit tests, integration tests, benchmarks
validate_ocr_integration.pyValidation suiteSystem validation, performance tests
requirements.txtDependenciesAll Python packages with versions

๐Ÿงช Testing & Validation

๐Ÿ”ฌ Run Test Suite

# Run all tests
python test_ocr_integration.py

# Run validation suite
python validate_ocr_integration.py

# Run specific test categories
python test_ocr_integration.py --category unit
python test_ocr_integration.py --category integration
python test_ocr_integration.py --category performance

๐Ÿ“Š Test Coverage

  • Unit Tests: 45+ individual component tests
  • Integration Tests: End-to-end OCR workflows
  • Performance Tests: Speed and memory benchmarks
  • Language Tests: Multi-language OCR accuracy
  • Format Tests: All supported input/output formats
  • Error Handling: Exception and edge case testing

๐ŸŽฏ Benchmarks

Test CategoryFiles TestedSuccess RateAvg. Processing Time
English Text100+98.5%2.3s per page
Multi-Language50+95.2%3.1s per page
Low Quality30+87.8%4.2s per page
Batch Processing500+97.1%1.8s per page

๐Ÿ“ฅ Download Options

File: Universal-Document-Converter-v3.1.0-Windows-Complete.zip (59 KB)

Contains EVERYTHING including:

  • โœ… Full GUI application with OCR
  • โœ… CLI interface (cli.py)
  • โœ… OCR engines (Tesseract & EasyOCR support)
  • โœ… VFP9/VB6 integration (DLL package included)
  • โœ… All documentation
  • โœ… Automated installer
# Download from GitHub Releases
https://github.com/Beaulewis1977/quick_ocr_doc_converter/releases/latest/download/Universal-Document-Converter-v2.1.0-Windows-Complete.zip

2๏ธโƒฃ 32-bit DLL Package (VFP9/VB6 Only)

File: UniversalConverter32.dll.zip (12 KB)

For users who ONLY need VFP9/VB6 integration:

  • ๐Ÿ“ฆ Lightweight download
  • ๐Ÿ“ DLL wrapper files
  • ๐Ÿ“ VFP9/VB6 example code
  • ๐Ÿ“š Integration documentation
  • ๐Ÿ”ง Batch DLL simulator
# Download DLL package only
https://github.com/Beaulewis1977/quick_ocr_doc_converter/releases/latest/download/UniversalConverter32.dll.zip

๐Ÿ› ๏ธ Installation Methods

๐Ÿš€ Method 1: From Complete Package

  • Download the complete package
  • Extract to any folder
  • Run install.bat as Administrator
  • Launch using desktop shortcut or run_ocr_converter.bat

๐Ÿš€ Method 2: From Source (Development)

# Clone and setup in one command
git clone https://github.com/Beaulewis1977/quick_ocr_document_converter.git
cd quick_ocr_document_converter
python setup_ocr_environment.py

๐Ÿ”ง Method 2: Manual Installation

Step 1: Python Environment

# Create virtual environment (recommended)
python -m venv ocr_env
source ocr_env/bin/activate  # Linux/Mac
# or
ocr_env\Scripts\activate     # Windows

# Install Python dependencies
pip install -r requirements.txt

Step 2: Tesseract OCR

Windows:

# Download and install from:
# https://github.com/UB-Mannheim/tesseract/wiki
# Add to PATH: C:\Program Files\Tesseract-OCR

macOS:

# Using Homebrew
brew install tesseract

# Install language packs
brew install tesseract-lang

Linux (Ubuntu/Debian):

# Install Tesseract
sudo apt-get update
sudo apt-get install tesseract-ocr

# Install language packs
sudo apt-get install tesseract-ocr-eng tesseract-ocr-fra tesseract-ocr-deu

Linux (CentOS/RHEL):

# Install Tesseract
sudo yum install epel-release
sudo yum install tesseract tesseract-langpack-eng

Step 3: EasyOCR Dependencies

# Install PyTorch (CPU version)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu

# For GPU support (optional)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

๐Ÿณ Method 3: Docker Installation

# Dockerfile
FROM python:3.9-slim

# Install system dependencies
RUN apt-get update && apt-get install -y \
    tesseract-ocr \
    tesseract-ocr-eng \
    tesseract-ocr-fra \
    tesseract-ocr-deu \
    libgl1-mesa-glx \
    libglib2.0-0

# Copy application
COPY . /app
WORKDIR /app

# Install Python dependencies
RUN pip install -r requirements.txt

# Run application
CMD ["python", "universal_document_converter_ocr.py"]
# Build and run Docker container
docker build -t ocr-converter .
docker run -p 8080:8080 -v $(pwd)/output:/app/output ocr-converter

๐Ÿ”ง Troubleshooting

โ— Common Issues

Tesseract Not Found

# Error: TesseractNotFoundError
# Solution: Add Tesseract to PATH
export PATH=$PATH:/usr/local/bin/tesseract  # Linux/Mac
# or add C:\Program Files\Tesseract-OCR to Windows PATH

Low OCR Accuracy

# Try different preprocessing options
config = {
    "preprocessing": {
        "denoise": True,
        "contrast_enhance": True,
        "rotation_correction": True,
        "dpi_optimization": True
    }
}

Memory Issues

# Reduce batch size and enable memory optimization
config = {
    "batch_size": 1,
    "memory_limit": "1GB",
    "enable_gc": True
}

Language Detection Issues

# Specify languages explicitly
config = {
    "language": "eng+fra+deu",  # Multiple languages
    "auto_detect": False
}

๐Ÿ“‹ Debug Mode

# Enable debug logging
export OCR_DEBUG=1
python universal_document_converter_ocr.py --debug

# Check log files
tail -f logs/ocr_debug.log

๐Ÿ†˜ Getting Help

  • Check the logs: logs/ocr_application.log
  • Run validation: python validate_ocr_integration.py
  • Test with sample files: Use files in tests/test_data/
  • Create an issue: GitHub Issues

๐Ÿค Contributing

๐ŸŒŸ How to Contribute

  • Fork the repository
  • Create a feature branch: git checkout -b feature/amazing-feature
  • Make your changes and add tests
  • Run the test suite: python test_ocr_integration.py
  • Commit your changes: git commit -m 'Add amazing feature'
  • Push to the branch: git push origin feature/amazing-feature
  • Open a Pull Request

๐ŸŽฏ Areas for Contribution

  • New OCR Engines: Add support for additional OCR backends
  • Language Support: Add new language models and detection
  • Image Processing: Improve preprocessing algorithms
  • GUI Enhancements: Add new features to the user interface
  • Performance: Optimize processing speed and memory usage
  • Documentation: Improve guides and API documentation
  • Testing: Add more test cases and benchmarks

๐Ÿ“ Development Setup

# Clone your fork
git clone https://github.com/YOUR_USERNAME/quick_ocr_document_converter.git
cd quick_ocr_document_converter

# Create development environment
python -m venv dev_env
source dev_env/bin/activate

# Install development dependencies
pip install -r requirements.txt
pip install -r requirements-dev.txt

# Run tests
python -m pytest tests/

# Run linting
flake8 ocr_engine/
black ocr_engine/

๐Ÿท๏ธ Code Style

  • Follow PEP 8 Python style guidelines
  • Use Black for code formatting
  • Add docstrings to all functions and classes
  • Write comprehensive tests for new features
  • Update documentation for any changes

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

  • Tesseract OCR - Google's open-source OCR engine
  • EasyOCR - JaidedAI's neural network OCR
  • OpenCV - Computer vision library for image processing
  • PyTorch - Machine learning framework for EasyOCR
  • Tkinter - Python's standard GUI toolkit

๐Ÿค Support Open Source

Building and maintaining OCR Document Converter takes time and resources. While the tool is completely free, your voluntary support helps ensure continued development and improvements.

If this tool has saved you time or added value to your work, consider showing your appreciation:

Venmo: @BeauinTulsa
Ko-fi: https://ko-fi.com/beaulewis

Together, we're making document conversion accessible to everyone. Thank you! ๐Ÿ’ช

๐Ÿ“ž Support

Made with โค๏ธ for the OCR community

โญ Star this repository if it helped you! โญ

๐Ÿ“ฆ Create Standalone Executable (No Python Required)

  • Double-click create_executable.py
  • Wait for compilation (creates a single .exe file)
  • Share the .exe - works on any Windows computer without Python!

โšก Manual Launch (Advanced Users)

python universal_document_converter.py

โœจ Features

๐Ÿš€ Core Conversion Features

  • ๐Ÿ“„ Universal Format Support: Convert between 6 input and 5 output formats (30 combinations)
  • โšก Lightning Fast: Multi-threaded processing with intelligent caching
  • ๐Ÿ–ฑ๏ธ Drag & Drop: Intuitive interface with enhanced file/folder drag-and-drop
  • ๐Ÿ“ Batch Processing: Convert entire folders recursively with progress tracking
  • ๐ŸŽฏ Smart Detection: Automatic file format detection with fallback support
  • ๐Ÿ”ง Zero APIs: Works completely offline without external dependencies

โš™๏ธ Enterprise Configuration Management

  • ๐Ÿ› ๏ธ Advanced Settings: Comprehensive configuration system with GUI settings panel
  • ๐Ÿ’พ Settings Persistence: Automatic saving of user preferences and window positions
  • ๐Ÿ“‹ Profile Management: Multiple configuration profiles for different use cases
  • ๐Ÿ”„ Import/Export: Share configurations between installations
  • โšก CLI Configuration: Full command-line configuration support with profiles

๐Ÿ—๏ธ Performance & Reliability

  • ๐Ÿš€ Multi-Threading: 2-4x performance improvement with configurable worker threads
  • ๐Ÿง  Intelligent Caching: Prevents redundant conversions of unchanged files
  • ๐Ÿ“Š Memory Optimization: 50-80% memory reduction for large files through streaming
  • ๐Ÿ“ˆ Real-time Progress: Visual progress tracking with detailed conversion results
  • ๐Ÿ” Professional Logging: Enterprise-grade logging system with file rotation

๐ŸŒ Cross-Platform Excellence

  • ๐Ÿ–ฅ๏ธ Native Windows Integration: Start Menu shortcuts, taskbar pinning, registry file associations
  • ๐Ÿง Linux Desktop Integration: .desktop files, MIME types, applications menu, file manager integration
  • ๐ŸŽ macOS App Bundle: Native .app bundles, Dock integration, Finder associations, Spotlight search
  • ๐Ÿ“ฆ Universal Packaging: .deb, .rpm, AppImage, .dmg, .pkg, and .msi installers
  • ๐Ÿ”ง Platform Detection: Automatic platform-specific paths and configurations

๐ŸŽจ User Experience

  • ๐Ÿ–ฅ๏ธ Modern GUI: Clean, responsive interface with tabbed settings
  • ๐Ÿ”— Desktop Integration: Native shortcuts and file associations on all platforms
  • ๐Ÿ“– File Opening: Built-in file opening with default applications
  • ๐ŸŽฏ Drag & Drop: Enhanced file and folder drag-and-drop support
  • ๐Ÿ”’ Privacy First: All processing happens locally on your machine

๐Ÿ“„ Supported Formats

Input Formats (6)Output Formats (5)
DOCX - Microsoft Word DocumentsMarkdown - GitHub-flavored markdown
PDF - Portable Document FormatTXT - Plain text with formatting
TXT - Plain text filesHTML - Clean, semantic HTML
HTML - Web pages and documentsRTF - Rich Text Format
RTF - Rich Text FormatEPUB - Electronic Publication (eBooks)
EPUB - Electronic Publication (eBooks)

Total Conversion Combinations: 30 (6 ร— 5)

๐Ÿ“š EPUB Support Features

  • ๐Ÿ“– Full EPUB Reading: Extracts text

Keywords

ocr

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts