
Security News
GitHub Actions Pricing Whiplash: Self-Hosted Actions Billing Change Postponed
GitHub postponed a new billing model for self-hosted Actions after developer pushback, but moved forward with hosted runner price cuts on January 1.
p-tqdm
Advanced tools
p_tqdm makes parallel processing with progress bars easy.
p_tqdm is a wrapper around pathos.multiprocessing and tqdm. Unlike Python's default multiprocessing library, pathos provides a more flexible parallel map which can apply almost any type of function, including lambda functions, nested functions, and class methods, and can easily handle functions with multiple arguments. tqdm is applied on top of pathos's parallel map and displays a progress bar including an estimated time to completion.
pip install p_tqdm
Let's say you want to add two lists element by element. Without any parallelism, this can be done easily with a Python map.
l1 = ['1', '2', '3']
l2 = ['a', 'b', 'c']
def add(a, b):
return a + b
added = map(add, l1, l2)
# added == ['1a', '2b', '3c']
But if the lists are much larger or the computation is more intense, parallelism becomes a necessity. However, the syntax is often cumbersome. p_tqdm makes it easy and adds a progress bar too.
from p_tqdm import p_map
added = p_map(add, l1, l2)
# added == ['1a', '2b', '3c']
0%| | 0/3 [00:00<?, ?it/s]
33%|████████████ | 1/3 [00:01<00:02, 1.00s/it]
66%|████████████████████████ | 2/3 [00:02<00:01, 1.00s/it]
100%|████████████████████████████████████| 3/3 [00:03<00:00, 1.00s/it]
Performs an ordered map in parallel.
from p_tqdm import p_map
def add(a, b):
return a + b
added = p_map(add, ['1', '2', '3'], ['a', 'b', 'c'])
# added = ['1a', '2b', '3c']
Returns an iterator for an ordered map in parallel.
from p_tqdm import p_imap
def add(a, b):
return a + b
iterator = p_imap(add, ['1', '2', '3'], ['a', 'b', 'c'])
for result in iterator:
print(result) # prints '1a', '2b', '3c'
Performs an unordered map in parallel.
from p_tqdm import p_umap
def add(a, b):
return a + b
added = p_umap(add, ['1', '2', '3'], ['a', 'b', 'c'])
# added is an array with '1a', '2b', '3c' in any order
Returns an iterator for an unordered map in parallel.
from p_tqdm import p_uimap
def add(a, b):
return a + b
iterator = p_uimap(add, ['1', '2', '3'], ['a', 'b', 'c'])
for result in iterator:
print(result) # prints '1a', '2b', '3c' in any order
Performs an ordered map sequentially.
from p_tqdm import t_map
def add(a, b):
return a + b
added = t_map(add, ['1', '2', '3'], ['a', 'b', 'c'])
# added == ['1a', '2b', '3c']
Returns an iterator for an ordered map to be performed sequentially.
from p_tqdm import p_imap
def add(a, b):
return a + b
iterator = t_imap(add, ['1', '2', '3'], ['a', 'b', 'c'])
for result in iterator:
print(result) # prints '1a', '2b', '3c'
All p_tqdm functions accept any number of iterables as input, as long as the number of iterables matches the number of arguments of the function.
To repeat a non-iterable argument along with the iterables, use Python's partial from the functools library. See the example below.
from functools import partial
l1 = ['1', '2', '3']
l2 = ['a', 'b', 'c']
def add(a, b, c=''):
return a + b + c
added = p_map(partial(add, c='!'), l1, l2)
# added == ['1a!', '2b!', '3c!']
All the parallel p_tqdm functions can be passed the keyword num_cpus to indicate how many CPUs to use. The default is all CPUs. num_cpus can either be an integer to indicate the exact number of CPUs to use or a float to indicate the proportion of CPUs to use.
Note that the parallel Pool objects used by p_tqdm are automatically closed when the map finishes processing.
All the parallel p_tqdm functions can be passed the keyword tqdm to choose a specific flavor of tqdm. By default, this value is taken from tqdm.auto. The tqdm parameter can be used pass p_tqdm output to tqdm.gui, tqdm.tk or any customized subclass of tqdm.
FAQs
Parallel processing with progress bars
We found that p-tqdm demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
GitHub postponed a new billing model for self-hosted Actions after developer pushback, but moved forward with hosted runner price cuts on January 1.

Research
Destructive malware is rising across open source registries, using delays and kill switches to wipe code, break builds, and disrupt CI/CD.

Security News
Socket CTO Ahmad Nassri shares practical AI coding techniques, tools, and team workflows, plus what still feels noisy and why shipping remains human-led.