New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

pandas-schema

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pandas-schema

A validation library for Pandas data frames using user-friendly schemas

  • 0.3.6
  • PyPI
  • Socket score

Maintainers
1

PandasSchema


For the full documentation, refer to the Github Pages Website <https://multimeric.github.io/PandasSchema/>_.

======================================================================

PandasSchema is a module for validating tabulated data, such as CSVs (Comma Separated Value files), and TSVs (Tab Separated Value files). It uses the incredibly powerful data analysis tool Pandas to do so quickly and efficiently.

For example, say your code expects a CSV that looks a bit like this:

.. code::

Given Name,Family Name,Age,Sex,Customer ID Gerald,Hampton,82,Male,2582GABK Yuuwa,Miyake,27,Male,7951WVLW Edyta,Majewska,50,Female,7758NSID

Now you want to be able to ensure that the data in your CSV is in the correct format:

.. code:: python

import pandas as pd from io import StringIO from pandas_schema import Column, Schema from pandas_schema.validation import LeadingWhitespaceValidation, TrailingWhitespaceValidation, CanConvertValidation, MatchesPatternValidation, InRangeValidation, InListValidation

schema = Schema([ Column('Given Name', [LeadingWhitespaceValidation(), TrailingWhitespaceValidation()]), Column('Family Name', [LeadingWhitespaceValidation(), TrailingWhitespaceValidation()]), Column('Age', [InRangeValidation(0, 120)]), Column('Sex', [InListValidation(['Male', 'Female', 'Other'])]), Column('Customer ID', [MatchesPatternValidation(r'\d{4}[A-Z]{4}')]) ])

test_data = pd.read_csv(StringIO('''Given Name,Family Name,Age,Sex,Customer ID Gerald ,Hampton,82,Male,2582GABK Yuuwa,Miyake,270,male,7951WVLW Edyta,Majewska ,50,Female,775ANSID '''))

errors = schema.validate(test_data)

for error in errors: print(error)

PandasSchema would then output

.. code:: text

{row: 0, column: "Given Name"}: "Gerald " contains trailing whitespace {row: 1, column: "Age"}: "270" was not in the range [0, 120) {row: 1, column: "Sex"}: "male" is not in the list of legal options (Male, Female, Other) {row: 2, column: "Family Name"}: "Majewska " contains trailing whitespace {row: 2, column: "Customer ID"}: "775ANSID" does not match the pattern "\d{4}[A-Z]{4}"

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc