
Security News
npm Adopts OIDC for Trusted Publishing in CI/CD Workflows
npm now supports Trusted Publishing with OIDC, enabling secure package publishing directly from CI/CD workflows without relying on long-lived tokens.
Pixeltable is the only Python library providing incremental storage, transformation, indexing, and orchestration of multimodal data.
Installation | Quick Start | Documentation | API Reference | Examples | Discord Community
pip install pixeltable
Pixeltable unifies multimodal data storage, retrieval and orchestration. It stores metadata and computed results persistently, typically in a .pixeltable
directory in your workspace. See configuration options for your setup. All media (videos, images, audio) resides in ext. files, and Pixeltable stores references to those. Files can be local/remote (e.g. S3). For the latter, Pixeltable caches the files locally on access.
https://github.com/user-attachments/assets/b50fd6df-5169-4881-9dbe-1b6e5d06cede
With Pixeltable, you define your entire data processing and AI workflow declaratively using computed columns on tables.
# Installation
pip install -qU torch transformers openai pixeltable
# Basic setup
import pixeltable as pxt
# Table with multimodal column types (Image, Video, Audio, Document)
t = pxt.create_table('images', {'input_image': pxt.Image})
# Computed columns: define transformation logic once, runs on all data
from pixeltable.functions import huggingface
# Object detection with automatic model management
t.add_computed_column(
detections=huggingface.detr_for_object_detection(
t.input_image,
model_id='facebook/detr-resnet-50'
)
)
# Extract specific fields from detection results
t.add_computed_column(detections_text=t.detections.label_text)
# OpenAI Vision API integration with built-in rate limiting and async managemennt
from pixeltable.functions import openai
t.add_computed_column(
vision=openai.vision(
prompt="Describe what's in this image.",
image=t.input_image,
model='gpt-4o-mini'
)
)
# Insert data - automatically triggers computation of all computed columns
t.insert(input_image='https://raw.github.com/pixeltable/pixeltable/release/docs/resources/images/000000000025.jpg')
# Query - All data, metadata, and computed results are persistently stored
results = t.select(
t.input_image,
t.detections_text,
t.vision
).collect()
Focus on your application logic, not the infrastructure.
Unified Multimodal Interface: pxt.Image
, pxt.Video
, pxt.Audio
, pxt.Document
, etc. – manage diverse data consistently.
t = pxt.create_table(
'media',
{
'img': pxt.Image,
'video': pxt.Video
}
)
Declarative Computed Columns: Define processing steps once; they run automatically on new/updated data.
t.add_computed_column(
classification=huggingface.vit_for_image_classification(
t.image
)
)
Built-in Vector Search: Add embedding indexes and perform similarity searches directly on tables/views.
t.add_embedding_index(
'img',
embedding=clip.using(
model_id='openai/clip-vit-base-patch32'
)
)
sim = t.img.similarity("cat playing with yarn")
On-the-Fly Data Views: Create virtual tables using iterators for efficient processing without data duplication.
frames = pxt.create_view(
'frames',
videos,
iterator=FrameIterator.create(
video=videos.video,
fps=1
)
)
Seamless AI Integration: Built-in functions for OpenAI, Anthropic, Hugging Face, CLIP, YOLOX, and more.
t.add_computed_column(
response=openai.chat_completions(
messages=[{"role": "user", "content": t.prompt}]
)
)
Bring Your Own Code: Extend Pixeltable with simple Python User-Defined Functions.
@pxt.udf
def format_prompt(context: list, question: str) -> str:
return f"Context: {context}\nQuestion: {question}"
Agentic Workflows / Tool Calling: Register @pxt.udf
or @pxt.query
functions as tools and orchestrate LLM-based tool use (incl. multimodal).
# Example tools: a UDF and a Query function for RAG
tools = pxt.tools(get_weather_udf, search_context_query)
# LLM decides which tool to call; Pixeltable executes it
t.add_computed_column(
tool_output=invoke_tools(tools, t.llm_tool_choice)
)
Persistent & Versioned: All data, metadata, and computed results are automatically stored.
t.revert() # Revert to a previous version
stored_table = pxt.get_table('my_existing_table') # Retrieve persisted table
SQL-like Python Querying: Familiar syntax combined with powerful AI capabilities.
results = (
t.where(t.score > 0.8)
.order_by(t.timestamp)
.select(t.image, score=t.score)
.limit(10)
.collect()
)
(See the Full Quick Start or Notebook Gallery for more details)
1. Multimodal Data Store and Data Transformation (Computed Column):
pip install pixeltable
import pixeltable as pxt
# Create a table
t = pxt.create_table(
'films',
{'name': pxt.String, 'revenue': pxt.Float, 'budget': pxt.Float},
if_exists="replace"
)
t.insert([
{'name': 'Inside Out', 'revenue': 800.5, 'budget': 200.0},
{'name': 'Toy Story', 'revenue': 1073.4, 'budget': 200.0}
])
# Add a computed column for profit - runs automatically!
t.add_computed_column(profit=(t.revenue - t.budget), if_exists="replace")
# Query the results
print(t.select(t.name, t.profit).collect())
# Output includes the automatically computed 'profit' column
2. Object Detection with YOLOX:
pip install pixeltable pixeltable-yolox
import PIL
import pixeltable as pxt
from yolox.models import Yolox
from yolox.data.datasets import COCO_CLASSES
t = pxt.create_table('image', {'image': pxt.Image}, if_exists='replace')
# Insert some images
prefix = 'https://upload.wikimedia.org/wikipedia/commons'
paths = [
'/1/15/Cat_August_2010-4.jpg',
'/e/e1/Example_of_a_Dog.jpg',
'/thumb/b/bf/Bird_Diversity_2013.png/300px-Bird_Diversity_2013.png'
]
t.insert({'image': prefix + p} for p in paths)
@pxt.udf
def detect(image: PIL.Image.Image) -> list[str]:
model = Yolox.from_pretrained("yolox_s")
result = model([image])
coco_labels = [COCO_CLASSES[label] for label in result[0]["labels"]]
return coco_labels
t.add_computed_column(classification=detect(t.image))
print(t.select().collect())
3. Image Similarity Search (CLIP Embedding Index):
pip install pixeltable sentence-transformers
import pixeltable as pxt
from pixeltable.functions.huggingface import clip
# Create image table and add sample images
images = pxt.create_table('my_images', {'img': pxt.Image}, if_exists='replace')
images.insert([
{'img': 'https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Orange_tabby_cat_sitting_on_fallen_leaves-Hisashi-01A.jpg/1920px-Orange_tabby_cat_sitting_on_fallen_leaves-Hisashi-01A.jpg'},
{'img': 'https://upload.wikimedia.org/wikipedia/commons/d/d5/Retriever_in_water.jpg'}
])
# Add CLIP embedding index for similarity search
images.add_embedding_index(
'img',
embedding=clip.using(model_id='openai/clip-vit-base-patch32')
)
# Text-based image search
query_text = "a dog playing fetch"
sim_text = images.img.similarity(query_text)
results_text = images.order_by(sim_text, asc=False).limit(3).select(
image=images.img, similarity=sim_text
).collect()
print("--- Text Query Results ---")
print(results_text)
# Image-based image search
query_image_url = 'https://upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Huskiesatrest.jpg/2880px-Huskiesatrest.jpg'
sim_image = images.img.similarity(query_image_url)
results_image = images.order_by(sim_image, asc=False).limit(3).select(
image=images.img, similarity=sim_image
).collect()
print("--- Image URL Query Results ---")
print(results_image)
4. Multimodal/Incremental RAG Workflow (Document Chunking & LLM Call):
pip install pixeltable openai spacy sentence-transformers
python -m spacy download en_core_web_sm
import pixeltable as pxt
import pixeltable.functions as pxtf
from pixeltable.functions import openai, huggingface
from pixeltable.iterators import DocumentSplitter
# Manage your tables by directories
directory = "my_docs"
pxt.drop_dir(directory, if_not_exists="ignore", force=True)
pxt.create_dir("my_docs")
# Create a document table and add a PDF
docs = pxt.create_table(f'{directory}.docs', {'doc': pxt.Document})
docs.insert([{'doc': 'https://github.com/pixeltable/pixeltable/raw/release/docs/resources/rag-demo/Jefferson-Amazon.pdf'}])
# Create chunks view with sentence-based splitting
chunks = pxt.create_view(
'doc_chunks',
docs,
iterator=DocumentSplitter.create(document=docs.doc, separators='sentence')
)
# Explicitly create the embedding function object
embed_model = huggingface.sentence_transformer.using(model_id='all-MiniLM-L6-v2')
# Add embedding index using the function object
chunks.add_embedding_index('text', string_embed=embed_model)
# Define query function for retrieval - Returns a DataFrame expression
@pxt.query
def get_relevant_context(query_text: str, limit: int = 3):
sim = chunks.text.similarity(query_text)
# Return a list of strings (text of relevant chunks)
return chunks.order_by(sim, asc=False).limit(limit).select(chunks.text)
# Build a simple Q&A table
qa = pxt.create_table(f'{directory}.qa_system', {'prompt': pxt.String})
# 1. Add retrieved context (now a list of strings)
qa.add_computed_column(context=get_relevant_context(qa.prompt))
# 2. Format the prompt with context
qa.add_computed_column(
final_prompt=pxtf.string.format(
"""
PASSAGES:
{0}
QUESTION:
{1}
""",
qa.context,
qa.prompt
)
)
# 4. Generate the answer using the well-formatted prompt column
qa.add_computed_column(
answer=openai.chat_completions(
model='gpt-4o-mini',
messages=[{
'role': 'user',
'content': qa.final_prompt
}]
).choices[0].message.content
)
# Ask a question and get the answer
qa.insert([{'prompt': 'What can you tell me about Amazon?'}])
print("--- Final Answer ---")
print(qa.select(qa.answer).collect())
Explore Pixeltable's capabilities interactively:
Building robust AI applications, especially multimodal ones, requires stitching together numerous tools:
This complex "data plumbing" slows down development, increases costs, and makes applications brittle and hard to reproduce.
We're working on a hosted Pixeltable service that will:
We love contributions! Whether it's reporting bugs, suggesting features, improving documentation, or submitting code changes, please check out our Contributing Guide and join the Discussions or our Discord Server.
Pixeltable is licensed under the Apache 2.0 License.
FAQs
AI Data Infrastructure: Declarative, Multimodal, and Incremental
We found that pixeltable demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
npm now supports Trusted Publishing with OIDC, enabling secure package publishing directly from CI/CD workflows without relying on long-lived tokens.
Research
/Security News
A RubyGems malware campaign used 60 malicious packages posing as automation tools to steal credentials from social media and marketing tool users.
Security News
The CNA Scorecard ranks CVE issuers by data completeness, revealing major gaps in patch info and software identifiers across thousands of vulnerabilities.