
Security News
Open Source Maintainers Demand Ability to Block Copilot-Generated Issues and PRs
Open source maintainers are urging GitHub to let them block Copilot from submitting AI-generated issues and pull requests to their repositories.
polars-coord-transforms
Advanced tools
Tools for coordinate transforms and S2-indexing via Polars Expression Plugins
This Polars plugin provides functionality which can be loosely described as tranformation of coordinates and extraction of features from them.
It contains functions which were needed in personal and work projects, therefore its set of features might appear a bit random. Nevertheless one can find it useful in projects related to robotics, geospatial science, spatial analytics etc.
The functions are divided among three namespaces: transform
, s2
, distance
:
transform
namespace contains functions for converting coordinates from\to map, ecef, lla, utm reference frames.
s2
namespace contains functions which allow to work with S2 Cells
distance
namespace allows to calculate distances between coordinates.
This plugin presupposes that coordianates represent points in space and that they are expressed with struct
datatype in Polars.
pip install polars-coord-transforms
import polars_coord_transforms
In order to use plugin, coordinates should be represented as struct
with fields x
, y
, z
(or, in case of LLA-points: lon
, lat
, alt
)!
For instance, if coordinates are in separate columns, one can make a valid struct
with pl.struct
native Polars function:
import polars as pl
df = pl.DataFrame(
dict(
lon=[31.409197919000064,],
lat=[58.860667429000046,],
alt=[57.309668855211015,],
)
)
df.with_columns(
point=pl.struct("lon", "lat", "alt")
)
Suppose we have the following DataFrame with some coordinates (column "pose"), rotation quaternion (column "rotation") and offset vector (column "offset"):
import polars as pl
df = pl.DataFrame(
[
pl.Series("pose", [{'x': 4190.66735544079, 'y': 14338.862844330957, 'z': 10.96391354687512}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
pl.Series("rotation", [{'x': 0.13007119, 'y': 0.26472049, 'z': 0.85758219, 'w': 0.42137553}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64, 'w': pl.Float64})),
pl.Series("offset", [{'x': 2852423.40536658, 'y': 2201848.41975346, 'z': 5245234.74365368}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
]
)
print(df)
shape: (1, 3)
βββββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββ
β pose β rotation β offset β
β --- β --- β --- β
β struct[3] β struct[4] β struct[3] β
βββββββββββββββββββββββββββββββͺββββββββββββββββββββββββββββͺββββββββββββββββββββββββββββββββββββ‘
β {4190.667,14338.863,10.964} β {0.130,0.265,0.858,0.421} β {2852423.405,2201848.420,5245234β¦ β
βββββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββββββββββ
transform
df.with_columns(
ecef=pl.col("pose").transform.map_to_ecef(
pl.col("rotation"), pl.col("offset")
)
)
shape: (1, 4)
ββββββββββββββββββββββββββ¬βββββββββββββββββββββββββ¬βββββββββββββββββββββββββ¬ββββββββββββββββββββββββ
β pose β rotation β offset β ecef β
β --- β --- β --- β --- β
β struct[3] β struct[4] β struct[3] β struct[3] β
ββββββββββββββββββββββββββͺβββββββββββββββββββββββββͺβββββββββββββββββββββββββͺββββββββββββββββββββββββ‘
β {4190.667,14338.863,10 β {0.130,0.265,0.858,0.4 β {2852423.405,2201848.4 β {2840491.941,2197932. β
β .964} β 21} β 20,5245234β¦ β 225,5253325β¦ β
ββββββββββββββββββββββββββ΄βββββββββββββββββββββββββ΄βββββββββββββββββββββββββ΄ββββββββββββββββββββββββ
df.with_columns(
pose_new=pl.col("ecef").transform.ecef_to_map("rotation", "offset")
).select(
"pose",
"pose_new"
)
shape: (1, 5)
βββββββββββββββββββββ¬ββββββββββββββββββββ¬ββββββββββββββββββββ¬ββββββββββββββββββββ¬βββββββββββββββββββ
β pose β rotation β offset β ecef β pose_new β
β --- β --- β --- β --- β --- β
β struct[3] β struct[4] β struct[3] β struct[3] β struct[3] β
βββββββββββββββββββββͺββββββββββββββββββββͺββββββββββββββββββββͺββββββββββββββββββββͺβββββββββββββββββββ‘
β {4190.667,14338.8 β {0.130,0.265,0.85 β {2852423.405,2201 β {2840491.941,2197 β {4190.667,14338. β
β 63,10.964} β 8,0.421} β 848.420,5245234β¦ β 932.225,5253325β¦ β 863,10.964} β
βββββββββββββββββββββ΄ββββββββββββββββββββ΄ββββββββββββββββββββ΄ββββββββββββββββββββ΄βββββββββββββββββββ
df.with_columns(
lla=pl.col("ecef").transform.ecef_to_lla()
)
shape: (1, 3)
βββββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββ
β pose β ecef β lla β
β --- β --- β --- β
β struct[3] β struct[3] β struct[3] β
βββββββββββββββββββββββββββββββͺββββββββββββββββββββββββββββββββββββͺββββββββββββββββββββββββββ‘
β {4190.667,14338.863,10.964} β {2840491.941,2197932.225,5253325β¦ β {37.732,55.820,163.916} β
βββββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββ
df.with_columns(
ecef_new=pl.col("lla").transform.lla_to_ecef()
)
shape: (1, 4)
ββββββββββββββββββββββββββ¬βββββββββββββββββββββββββ¬βββββββββββββββββββββββββ¬ββββββββββββββββββββββββ
β pose β ecef β lla β ecef_new β
β --- β --- β --- β --- β
β struct[3] β struct[3] β struct[3] β struct[3] β
ββββββββββββββββββββββββββͺβββββββββββββββββββββββββͺβββββββββββββββββββββββββͺββββββββββββββββββββββββ‘
β {4190.667,14338.863,10 β {2840491.941,2197932.2 β {37.732,55.820,163.916 β {2840491.941,2197932. β
β .964} β 25,5253325β¦ β } β 225,5253325β¦ β
ββββββββββββββββββββββββββ΄βββββββββββββββββββββββββ΄βββββββββββββββββββββββββ΄ββββββββββββββββββββββββ
df.with_columns(
utm=pl.col("lla").transform.lla_to_utm()
)
shape: (1, 3)
βββββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββββββββ
β pose β lla β utm β
β --- β --- β --- β
β struct[3] β struct[3] β struct[3] β
βββββββββββββββββββββββββββββββͺββββββββββββββββββββββββββͺβββββββββββββββββββββββββββββββββββ‘
β {4190.667,14338.863,10.964} β {37.732,55.820,163.916} β {420564.380,6186739.936,163.916} β
βββββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββββββββββ
df.with_columns(
utm_zone_number=pl.col("lla").transform.lla_to_utm_zone_number()
)
shape: (1, 3)
βββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββββββββ¬ββββββββββββββββββ
β lla β utm β utm_zone_number β
β --- β --- β --- β
β struct[3] β struct[3] β u8 β
βββββββββββββββββββββββββββͺβββββββββββββββββββββββββββββββββββͺββββββββββββββββββ‘
β {37.732,55.820,163.916} β {420564.380,6186739.936,163.916} β 37 β
βββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββββββββββ΄ββββββββββββββββββ
the function returns a struct with 3 fields:"roll", "pitch", "yaw"
df.select(
euler_angles=pl.col("rotation").transform.quat_to_euler_angles()
)
ββββββββββββββββββββββββββββββββ
β euler_angles β
β --- β
β struct[3] β
ββββββββββββββββββββββββββββββββ‘
β {0.598806,0.000000,2.228181} β
ββββββββββββββββββββββββββββββββ
s2
df.select(
cellid_30=pl.col("lla").s2.lonlat_to_cellid(level=30),
cellid_28=pl.col("lla").s2.lonlat_to_cellid(level=28),
cellid_5=pl.col("lla").s2.lonlat_to_cellid(level=5),
)
shape: (1, 3)
βββββββββββββββββββββββ¬ββββββββββββββββββββββ¬ββββββββββββββββββββββ
β cellid_30 β cellid_28 β cellid_5 β
β --- β --- β --- β
β u64 β u64 β u64 β
βββββββββββββββββββββββͺββββββββββββββββββββββͺββββββββββββββββββββββ‘
β 5095036114269810839 β 5095036114269810832 β 5094697078462873600 β
βββββββββββββββββββββββ΄ββββββββββββββββββββββ΄ββββββββββββββββββββββ
df.select(
lla_cell=pl.lit(5095036114269810839, dtype=pl.UInt64()).s2.cellid_to_lonlat()
)
shape: (1, 1)
βββββββββββββββββββ
β lla_cell β
β --- β
β struct[2] β
βββββββββββββββββββ‘
β {37.732,55.820} β
βββββββββββββββββββ
df.select(
lla",
cellid=pl.lit(5095036114269810832, dtype=pl.UInt64()),
is_in_cell=pl.lit(5095036114269810832, dtype=pl.UInt64()).s2.cell_contains_point(pl.col("lla"))
)
shape: (1, 3)
βββββββββββββββββββββββββββ¬ββββββββββββββββββββββ¬βββββββββββββ
β lla β cellid β is_in_cell β
β --- β --- β --- β
β struct[3] β u64 β bool β
βββββββββββββββββββββββββββͺββββββββββββββββββββββͺβββββββββββββ‘
β {37.732,55.820,163.916} β 5095036114269810832 β true β
βββββββββββββββββββββββββββ΄ββββββββββββββββββββββ΄βββββββββββββ
df.with_columns(
cellid=pl.col("lla").s2.lonlat_to_cellid(level=5),
).with_columns(
vertices=pl.col("cellid").s2.cellid_to_vertices()
)
shape: (1, 4)
βββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββ¬ββββββββββββββββββββββ¬βββββββββββββββββββββββββ
β pose β lla β cellid β vertices β
β --- β --- β --- β --- β
β struct[3] β struct[3] β u64 β struct[8] β
βββββββββββββββββββββββββββͺββββββββββββββββββββββββββͺββββββββββββββββββββββͺβββββββββββββββββββββββββ‘
β {4190.667,14338.863,10. β {37.732,55.820,163.916} β 5094697078462873600 β {37.304,55.491,40.932, β
β 964} β β β 57.545,36.β¦ β
βββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββ΄ββββββββββββββββββββββ΄βββββββββββββββββββββββββ
df.select("vertices").unnest("vertices")
shape: (1, 8)
ββββββββββ¬βββββββββ¬βββββββββ¬βββββββββ¬βββββββββ¬βββββββββ¬βββββββββ¬βββββββββ
β v0_lon β v0_lat β v1_lon β v1_lat β v2_lon β v2_lat β v3_lon β v3_lat β
β --- β --- β --- β --- β --- β --- β --- β --- β
β f64 β f64 β f64 β f64 β f64 β f64 β f64 β f64 β
ββββββββββͺβββββββββͺβββββββββͺβββββββββͺβββββββββͺβββββββββͺβββββββββͺβββββββββ‘
β 37.304 β 55.491 β 40.932 β 57.545 β 36.495 β 59.135 β 33.024 β 56.886 β
ββββββββββ΄βββββββββ΄βββββββββ΄βββββββββ΄βββββββββ΄βββββββββ΄βββββββββ΄βββββββββ
distance
df = pl.DataFrame(
[
pl.Series("point_1", [{'x': -8893.663914126577, 'y': 19116.178523519542, 'z': 14.98697863612324}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
pl.Series("point_2", [{'x': 1553.3742543335538, 'y': 2916.118342842441, 'z': 15.580027717165649}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
]
)
df.with_columns(
distance=pl.col("point_1").distance.euclidean_3d(pl.col("point_2"))
)
shape: (1, 3)
ββββββββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββ¬ββββββββββββ
β point_1 β point_2 β distance β
β --- β --- β --- β
β struct[3] β struct[3] β f64 β
ββββββββββββββββββββββββββββββββͺβββββββββββββββββββββββββββββͺββββββββββββ‘
β {-8893.664,19116.179,14.987} β {1553.374,2916.118,15.580} β 19276.477 β
ββββββββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββββ΄ββββββββββββ
df.with_columns(
cosine_sim=pl.col("point_1").distance.cosine_similarity_3d(pl.col("point_2"))
)
shape: (1, 3)
ββββββββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββ¬βββββββββββββ
β point_1 β point_2 β cosine_sim β
β --- β --- β --- β
β struct[3] β struct[3] β f64 β
ββββββββββββββββββββββββββββββββͺβββββββββββββββββββββββββββββͺβββββββββββββ‘
β {-8893.664,19116.179,14.987} β {1553.374,2916.118,15.580} β 0.602 β
ββββββββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββββ΄βββββββββββββ
df.with_columns(
distance=pl.col("point_1").distance.euclidean_2d(pl.col("point_2"))
)
ββββββββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββ¬ββββββββββββ
β point_1 β point_2 β distance β
β --- β --- β --- β
β struct[3] β struct[3] β f64 β
ββββββββββββββββββββββββββββββββͺβββββββββββββββββββββββββββββͺββββββββββββ‘
β {-8893.664,19116.179,14.987} β {1553.374,2916.118,15.580} β 19276.477 β
ββββββββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββββ΄ββββββββββββ
shape: (1, 3)
ββββββββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββ¬βββββββββββββ
β point_1 β point_2 β cosine_sim β
β --- β --- β --- β
β struct[3] β struct[3] β f64 β
ββββββββββββββββββββββββββββββββͺβββββββββββββββββββββββββββββͺβββββββββββββ‘
β {-8893.664,19116.179,14.987} β {1553.374,2916.118,15.580} β 0.602 β
ββββββββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββββ΄βββββββββββββ
FAQs
Tools for coordinate transforms and S2-indexing via Polars Expression Plugins
We found that polars-coord-transforms demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago.Β It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Open source maintainers are urging GitHub to let them block Copilot from submitting AI-generated issues and pull requests to their repositories.
Research
Security News
Malicious Koishi plugin silently exfiltrates messages with hex strings to a hardcoded QQ account, exposing secrets in chatbots across platforms.
Research
Security News
Malicious PyPI checkers validate stolen emails against TikTok and Instagram APIs, enabling targeted account attacks and dark web credential sales.