🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Sign inDemoInstall
Socket

py-data-viewer

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

py-data-viewer

A python library to display data structure values for easier navigation and exploration.

0.0.9
PyPI
Maintainers
1

Py-Data-Viewer

py-data-viewer is a lightweight Python library that makes exploring and navigating complex data structures in the terminal effortless. It provides a clear, tree-based visualization of nested dictionaries, lists, objects, and more, making debugging and data analysis more efficient. No more getting lost in complex nested structures or struggling to understand what's inside your data or how to access them!

Trees for complex data structures, Trees for simple data structures, Trees for everything!!

No more confusion with complex data structures or asking "what's inside this dictionary!?"

from py_data_viewer import vprint

async def some_async_fn():
    response = await some_api_call()
    vprint(response) # 👈 pass in full response or part of it! It can handle Iterables[of_any_T]!!

No more looking for properties in a long list of dictionaries or objects while in the terminal!

vprint(data, "result")

Features

  • Tree View: Visualize data structures in the terminal as a tree for better clarity.
  • Colorized Output: Easily distinguish different parts of the data structure.
  • Supports Multiple Data Types: Works with dictionaries, lists, objects, namedtuples, and mixed structures.
  • API Response Exploration: Simplifies debugging and understanding of API responses, especially for complex outputs.
  • Programmatic Usage: Integrate directly into your Python scripts with the vprint function.

Installation

To install the package, use pip:

pip install py-data-viewer -U

Then, import:

from py_data_viewer import vprint

Usage

Programmatic Usage with vprint

The vprint function is the easiest way to explore data structures in your Python scripts. It provides a tree-like visualization of your data, making it ideal for debugging API responses, especially from frameworks!

Example: Exploring an API Response

from py_data_viewer import vprint

# Simulated API response
response = {
    "chat_message": {
        "source": "Assistant",
        "content": "This is a response from an LLM.",
        "metadata": {},
    },
    "inner_messages": [
        {
            "type": "ToolCallRequestEvent",
            "content": [{"name": "search", "arguments": '{"query":"example"}'}],
        },
        {
            "type": "ToolCallExecutionEvent",
            "content": [{"name": "search", "content": "Search result here."}],
        },
    ],
}

vprint(response, var_name="messages", colorize=False)

Output showing you exactly how to access the data you want:

messages
├── messages.chat_message = dict with 3 items
│   ├── messages.chat_message.source = 'Assistant'
│   ├── messages.chat_message.content = 'This is a response from an LLM.'
│   └── messages.chat_message.metadata = dict with 0 items
└── messages.inner_messages = list with 2 items
    ├── messages.inner_messages[0] = dict with 2 items
    │   ├── messages.inner_messages[0].type = 'ToolCallRequestEvent'
    │   └── messages.inner_messages[0].content = list with 1 items
    │       └── messages.inner_messages[0].content[0] = dict with 2 items
    │           ├── messages.inner_messages[0].content[0].name = 'search'
    │           └── messages.inner_messages[0].content[0].arguments = '{"query":"example"}'
    └── messages.inner_messages[1] = dict with 2 items
        ├── messages.inner_messages[1].type = 'ToolCallExecutionEvent'
        └── messages.inner_messages[1].content = list with 1 items
            └── messages.inner_messages[1].content[0] = dict with 2 items
                ├── messages.inner_messages[1].content[0].name = 'search'
                └── messages.inner_messages[1].content[0].content = 'Search result here.'

Example: Exploring a Complex Data Structure

from py_data_viewer import vprint

data = {
    "user": {"id": 1, "name": "Alice"},
    "actions": [
        {"type": "login", "timestamp": "2023-01-01T12:00:00Z"},
        {"type": "purchase", "details": {"item": "book", "price": 12.99}},
    ],
}

vprint(data, var_name="data")

Advanced Options

The vprint function supports several options to customize the output:

  • var_name: Specify the variable name to display in the output.
  • colorize: Enable or disable colorized output (default: True).

Example:

vprint(data, var_name="custom_data_name", colorize=False)

Contributing

Contributions are welcome! To contribute:

  • Fork the repository.
  • Create a new branch for your feature or bugfix.
  • Commit your changes and push the branch.
  • Open a pull request.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Keywords

python

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts