Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Python library for reading, writing and managing 3D objects in the Khronos Group gltf and gltf2 formats.
This is a library for reading, writing and handling GLTF v2 files. It works for Python3.6 and above.
It supports the entire specification, including materials and animations. Main features are:
pip install pygltflib
from pygltflib import GLTF2
gltf = GLTF2()
from pygltflib import GLTF2, Scene
gltf = GLTF2()
scene = Scene()
gltf.scenes.append(scene) # scene available at gltf.scenes[0]
filename = "glTF-Sample-Models/2.0/AnimatedCube/glTF/AnimatedCube.gltf"
gltf = GLTF2().load(filename)
glb_filename = "glTF-Sample-Models/2.0/Box/glTF-Binary/Box.glb"
glb = GLTF2().load(glb_filename) # load method auto detects based on extension
glb = GLTF2().load_binary("BinaryGLTF.glk") # load_json and load_binary helper methods
.B3DM files are a deprecated format used by CesiumJS. They are a wrapper around a GLTF1 file. pygltflib only supports GLTF2 files. Please open an issue if this is important to you!
gltf = GLTF2().load("glTF-Sample-Models/2.0/Box/glTF/Box.gltf")
current_scene = gltf.scenes[gltf.scene]
node_index = current_scene.nodes[0] # scene.nodes is the indices, not the objects
box = gltf.nodes[node_index]
box.matrix # will output vertices for the box object
Consult the longer examples in the second half of this document
from pygltflib import GLTF2, BufferFormat
gltf = GLTF2().load("glTF-Sample-Models/2.0/Box/glTF/Box.gltf")
gltf.convert_buffers(BufferFormat.BINARYBLOB) # convert buffers to GLB blob
gltf.convert_buffers(BufferFormat.DATAURI) # convert buffer URIs to data.
gltf.convert_buffers(BufferFormat.BINFILE) # convert buffers to files
gltf.save("test.gltf") # all the buffers are saved in 0.bin, 1.bin, 2.bin.
from pygltflib.utils import glb2gltf, gltf2glb
# convert glb to gltf
glb2gltf("glTF-Sample-Models/2.0/Box/glTF-Binary/Box.glb")
# on a primitve
gltf.meshes[0].primitives[0].extensions['KHR_draco_mesh_compression']
# on a material
gltf.materials[0].extensions['ADOBE_materials_thin_transparency']
# Application-specific semantics must start with an underscore, e.g., _TEMPERATURE.
a = Attributes()
a._MYCUSTOMATTRIBUTE = 123
gltf.meshes[0].primitives[0].attributes._MYOTHERATTRIBUTE = 456
gltf.remove_bufferView(0) # this will update all accessors, images and sparse accessors to remove the first bufferView
from pygltflib import GLTF2
from pygltflib.validator import validate, summary
filename = "glTF-Sample-Models/2.0/AnimatedCube/glTF/AnimatedCube.gltf"
gltf = GLTF2().load(filename)
validate(gltf) # will throw an error depending on the problem
summary(gltf) # will pretty print human readable summary of errors
# NOTE: Currently this experimental validator only validates a few rules about GLTF2 objects
from pygltflib import GLTF2
from pygltflib.utils import ImageFormat
filename = "glTF-Sample-Models/2.0/AnimatedCube/glTF/AnimatedCube.gltf"
gltf = GLTF2().load(filename)
gltf.convert_images(ImageFormat.FILE)
gltf.images[0].uri # will now be 0.png and the texture image will be saved in 0.png
from pygltflib import GLTF2
from pygltflib.utils import ImageFormat
filename = "glTF-Sample-Models/2.0/AnimatedCube/glTF/AnimatedCube.gltf"
gltf = GLTF2().load(filename)
gltf.images[0].name = "cube.png" # will save the data uri to this file (regardless of data format)
gltf.convert_images(ImageFormat.FILE)
gltf.images[0].uri # will now be cube.png and the texture image will be saved in cube.png
By default pygltflib will load images from the same location as the GLTF file.
It will also try and save image files to the that location when converting image buffers or data uris.
You can override the load/save location using the 'path' argument to convert_images
from pygltflib import GLTF2
from pygltflib.utils import ImageFormat
filename = "glTF-Sample-Models/2.0/AnimatedCube/glTF/AnimatedCube.gltf"
gltf = GLTF2().load(filename)
gltf.images[0].name = "cube.png" # will save the data uri to this file (regardless of data format)
gltf.convert_images(ImageFormat.FILE, path='/destination/')
gltf.images[0].uri # will now be cube.png and the texture image will be saved in /destination/cube.png
from pygltflib import GLTF2
from pygltflib.utils import ImageFormat
filename = "glTF-Sample-Models/2.0/AnimatedCube/glTF/AnimatedCube.gltf"
gltf = GLTF2().load(filename)
gltf.export_image(0, "output/cube.png", override=True) # There is now an image file at output/cube.png
from pygltflib import GLTF2
from pygltflib.utils import ImageFormat, Image
gltf = GLTF2()
image = Image()
image.uri = "myfile.png"
gltf.images.append(image)
gltf.convert_images(ImageFormat.DATAURI)
gltf.images[0].uri # will now be something like "..."
gltf.images[0].name # will be myfile.png
This is an unofficial library that tracks the official file format for GLTF2.
The library was initially built to load and save simple meshes but support for the entire spec, including materials and animations is pretty good. Supports both json (.gltf) and binary (.glb) file formats, although .glb support is missing some features at the moment.
It requires python 3.6 and above because it uses dataclasses and all attributes are type hinted. And f-strings, plenty of f-strings.
Check the table below for an idea of which sample models validate.
Questions? Contributions? Bug reports? Open an issue on the gitlab page for the project.
We are very interested in hearing your use cases for pygltflib
to help drive the roadmap.
pygltflib
made for 'The Beat: A Glam Noir Game' supported by Film Victoria / VicScreen.
1.16.3:
load_binary
and load_json
now set object _name and _path to align with load
method functionality (Johannes Pieger)1.16.2:
1.16.1:
1.16.0:
1.15.6:
1.15.4:
1.15.3:
1.15.2:
1.15.1:
AlphaMode
after two years (use the pygltflib.BLEND
, pygltflib.MASK
, pygltflib.OPAQUE
constants directly)SparseAccessor
after two years (use AccessorSparseIndices
and AccessorSparseValues
instead)MaterialTexture
after two years (use TextureInfo
instead)deprecated
requirement from project1.15.0:
save_to_bytes
performance (20x faster) (Florian Bruggisser)
See [CHANGELOG.md] (https://gitlab.com/dodgyville/pygltflib/-/blob/master/CHANGELOG.md) for older versions
pip install pygltflib
or
py -m pip install pygltflib
git clone https://gitlab.com/dodgyville/pygltflib
Note: These examples use the official sample models provided by Khronos at:
https://github.com/KhronosGroup/glTF-Sample-Models
from pygltflib import *
# create gltf objects for a scene with a primitive triangle with indexed geometry
gltf = GLTF2()
scene = Scene()
mesh = Mesh()
primitive = Primitive()
node = Node()
buffer = Buffer()
bufferView1 = BufferView()
bufferView2 = BufferView()
accessor1 = Accessor()
accessor2 = Accessor()
# add data
buffer.uri = "data:application/octet-stream;base64,AAABAAIAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAA="
buffer.byteLength = 44
bufferView1.buffer = 0
bufferView1.byteOffset = 0
bufferView1.byteLength = 6
bufferView1.target = ELEMENT_ARRAY_BUFFER
bufferView2.buffer = 0
bufferView2.byteOffset = 8
bufferView2.byteLength = 36
bufferView2.target = ARRAY_BUFFER
accessor1.bufferView = 0
accessor1.byteOffset = 0
accessor1.componentType = UNSIGNED_SHORT
accessor1.count = 3
accessor1.type = SCALAR
accessor1.max = [2]
accessor1.min = [0]
accessor2.bufferView = 1
accessor2.byteOffset = 0
accessor2.componentType = FLOAT
accessor2.count = 3
accessor2.type = VEC3
accessor2.max = [1.0, 1.0, 0.0]
accessor2.min = [0.0, 0.0, 0.0]
primitive.attributes.POSITION = 1
node.mesh = 0
scene.nodes = [0]
# assemble into a gltf structure
gltf.scenes.append(scene)
gltf.meshes.append(mesh)
gltf.meshes[0].primitives.append(primitive)
gltf.nodes.append(node)
gltf.buffers.append(buffer)
gltf.bufferViews.append(bufferView1)
gltf.bufferViews.append(bufferView2)
gltf.accessors.append(accessor1)
gltf.accessors.append(accessor2)
# save to file
gltf.save("triangle.gltf")
import pathlib
import struct
import miniball
import numpy
from pygltflib import GLTF2
# load an example gltf file from the khronos collection
fname = pathlib.Path("glTF-Sample-Models/2.0/Box/glTF-Embedded/Box.gltf")
gltf = GLTF2().load(fname)
# get the first mesh in the current scene (in this example there is only one scene and one mesh)
mesh = gltf.meshes[gltf.scenes[gltf.scene].nodes[0]]
# get the vertices for each primitive in the mesh (in this example there is only one)
for primitive in mesh.primitives:
# get the binary data for this mesh primitive from the buffer
accessor = gltf.accessors[primitive.attributes.POSITION]
bufferView = gltf.bufferViews[accessor.bufferView]
buffer = gltf.buffers[bufferView.buffer]
data = gltf.get_data_from_buffer_uri(buffer.uri)
# pull each vertex from the binary buffer and convert it into a tuple of python floats
vertices = []
for i in range(accessor.count):
index = bufferView.byteOffset + accessor.byteOffset + i*12 # the location in the buffer of this vertex
d = data[index:index+12] # the vertex data
v = struct.unpack("<fff", d) # convert from base64 to three floats
vertices.append(v)
print(i, v)
# convert a numpy array for some manipulation
S = numpy.array(vertices)
# use a third party library to perform Ritter's algorithm for finding smallest bounding sphere
C, radius_squared = miniball.get_bounding_ball(S)
# output the results
print(f"center of bounding sphere: {C}\nradius squared of bounding sphere: {radius_squared}")
The geometry is derived from glTF 2.0 Box Sample, but point normals were removed and points were reused where it was possible in order to reduce the size of the example. Be aware that some parts are hard-coded (types and shapes for en- and decoding of arrays, no bytes padding).
import numpy as np
import pygltflib
Define mesh using numpy
:
points = np.array(
[
[-0.5, -0.5, 0.5],
[0.5, -0.5, 0.5],
[-0.5, 0.5, 0.5],
[0.5, 0.5, 0.5],
[0.5, -0.5, -0.5],
[-0.5, -0.5, -0.5],
[0.5, 0.5, -0.5],
[-0.5, 0.5, -0.5],
],
dtype="float32",
)
triangles = np.array(
[
[0, 1, 2],
[3, 2, 1],
[1, 0, 4],
[5, 4, 0],
[3, 1, 6],
[4, 6, 1],
[2, 3, 7],
[6, 7, 3],
[0, 2, 5],
[7, 5, 2],
[5, 7, 4],
[6, 4, 7],
],
dtype="uint8",
)
Create glb-style GLTF2
with single scene, single node and single mesh from arrays of points and triangles:
triangles_binary_blob = triangles.flatten().tobytes()
points_binary_blob = points.tobytes()
gltf = pygltflib.GLTF2(
scene=0,
scenes=[pygltflib.Scene(nodes=[0])],
nodes=[pygltflib.Node(mesh=0)],
meshes=[
pygltflib.Mesh(
primitives=[
pygltflib.Primitive(
attributes=pygltflib.Attributes(POSITION=1), indices=0
)
]
)
],
accessors=[
pygltflib.Accessor(
bufferView=0,
componentType=pygltflib.UNSIGNED_BYTE,
count=triangles.size,
type=pygltflib.SCALAR,
max=[int(triangles.max())],
min=[int(triangles.min())],
),
pygltflib.Accessor(
bufferView=1,
componentType=pygltflib.FLOAT,
count=len(points),
type=pygltflib.VEC3,
max=points.max(axis=0).tolist(),
min=points.min(axis=0).tolist(),
),
],
bufferViews=[
pygltflib.BufferView(
buffer=0,
byteLength=len(triangles_binary_blob),
target=pygltflib.ELEMENT_ARRAY_BUFFER,
),
pygltflib.BufferView(
buffer=0,
byteOffset=len(triangles_binary_blob),
byteLength=len(points_binary_blob),
target=pygltflib.ARRAY_BUFFER,
),
],
buffers=[
pygltflib.Buffer(
byteLength=len(triangles_binary_blob) + len(points_binary_blob)
)
],
)
gltf.set_binary_blob(triangles_binary_blob + points_binary_blob)
Write GLTF2
to bytes:
glb = b"".join(gltf.save_to_bytes()) # save_to_bytes returns an array of the components of a glb
Load GLTF2
from bytes:
gltf = pygltflib.GLTF2.load_from_bytes(glb)
Decode numpy
arrays from GLTF2
:
binary_blob = gltf.binary_blob()
triangles_accessor = gltf.accessors[gltf.meshes[0].primitives[0].indices]
triangles_buffer_view = gltf.bufferViews[triangles_accessor.bufferView]
triangles = np.frombuffer(
binary_blob[
triangles_buffer_view.byteOffset
+ triangles_accessor.byteOffset : triangles_buffer_view.byteOffset
+ triangles_buffer_view.byteLength
],
dtype="uint8",
count=triangles_accessor.count,
).reshape((-1, 3))
points_accessor = gltf.accessors[gltf.meshes[0].primitives[0].attributes.POSITION]
points_buffer_view = gltf.bufferViews[points_accessor.bufferView]
points = np.frombuffer(
binary_blob[
points_buffer_view.byteOffset
+ points_accessor.byteOffset : points_buffer_view.byteOffset
+ points_buffer_view.byteLength
],
dtype="float32",
count=points_accessor.count * 3,
).reshape((-1, 3))
P.S.: If you'd like to use "compiled" version of mesh writing:
gltf = pygltflib.GLTF2(
scene=0,
scenes=[pygltflib.Scene(nodes=[0])],
nodes=[pygltflib.Node(mesh=0)],
meshes=[
pygltflib.Mesh(
primitives=[
pygltflib.Primitive(
attributes=pygltflib.Attributes(POSITION=1), indices=0
)
]
)
],
accessors=[
pygltflib.Accessor(
bufferView=0,
componentType=pygltflib.UNSIGNED_BYTE,
count=36,
type=pygltflib.SCALAR,
max=[7],
min=[0],
),
pygltflib.Accessor(
bufferView=1,
componentType=pygltflib.FLOAT,
count=8,
type=pygltflib.VEC3,
max=[0.5, 0.5, 0.5],
min=[-0.5, -0.5, -0.5],
),
],
bufferViews=[
pygltflib.BufferView(
buffer=0, byteLength=36, target=pygltflib.ELEMENT_ARRAY_BUFFER
),
pygltflib.BufferView(
buffer=0, byteOffset=36, byteLength=96, target=pygltflib.ARRAY_BUFFER
),
],
buffers=[pygltflib.Buffer(byteLength=132)],
)
gltf.set_binary_blob(
b"\x00\x01\x02\x03\x02\x01\x01\x00\x04\x05\x04\x00\x03\x01\x06\x04\x06\x01"
b"\x02\x03\x07\x06\x07\x03\x00\x02\x05\x07\x05\x02\x05\x07\x04\x06\x04\x07"
b"\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00?\x00\x00\x00?\x00\x00\x00"
b"\xbf\x00\x00\x00?\x00\x00\x00\xbf\x00\x00\x00?\x00\x00\x00?\x00\x00\x00?"
b"\x00\x00\x00?\x00\x00\x00?\x00\x00\x00?\x00\x00\x00\xbf\x00\x00\x00\xbf"
b"\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00?\x00\x00"
b"\x00?\x00\x00\x00\xbf\x00\x00\x00\xbf\x00\x00\x00?\x00\x00\x00\xbf"
)
pygltflib
can load json-based .GLTF files and binary .GLB files, based on the file extension.
>>> from pygltflib import GLTF2
>>> filename = "glTF-Sample-Models/2.0/AnimatedCube/glTF/AnimatedCube.gltf"
>>> gltf = GLTF2().load(filename)
>>> gltf.scene
0
>>> gltf.scenes
[Scene(name='', nodes=[0])]
>>> gltf.nodes[0]
Node(mesh=0, skin=None, rotation=[0.0, -1.0, 0.0, 0.0], translation=[], scale=[], children=[], matrix=[], camera=None, name='AnimatedCube')
>>> gltf.nodes[0].name
'AnimatedCube'
>>> gltf.meshes[0].primitives[0].attributes
Attributes(NORMAL=4, POSITION=None, TANGENT=5, TEXCOORD_0=6)
>>> filename2 = "test.gltf"
>>> gltf.save(filename2)
>>> from pygltflib import GLTF2
>>> glb_filename = "glTF-Sample-Models/2.0/Box/glTF-Binary/Box.glb"
>>> glb = GLTF2().load(glb_filename)
>>> glb.scene
0
>>> glb.scenes
[Scene(name='', nodes=[0])]
>>> glb.nodes[0]
Node(mesh=None, skin=None, rotation=[], translation=[], scale=[], children=[1], matrix=[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], camera=None, name=None)
>>> glb.meshes[0].primitives[0].attributes
Attributes(POSITION=2, NORMAL=1, TANGENT=None, TEXCOORD_0=None, TEXCOORD_1=None, COLOR_0=None, JOINTS_0=None, WEIGHTS_0=None)
>>> glb.save("test.glb")
>>> glb.binary_blob() # read the binary blob used by the buffer in a glb
<a bunch of binary data>
from pygltflib import GLTF2
# convert glb to gltf
glb = GLTF2().load("glTF-Sample-Models/2.0/Box/glTF-Binary/Box.glb")
glb.save("test.gltf")
# convert gltf to glb
gltf = GLTF2().load("glTF-Sample-Models/2.0/Box/glTF/Box.gltf")
gltf.save("test.glb")
from pygltflib import GLTF2
from pygltflib.utils import glb2gltf, gltf2glb
# convert glb to gltf
glb2gltf("glTF-Sample-Models/2.0/Box/glTF-Binary/Box.glb")
# convert gltf to glb
gltf2glb("glTF-Sample-Models/2.0/Box/glTF/Box.gltf", "test.glb", override=True)
The data for a buffer in a GLTF2 files can be stored in the buffer object's URI string or in a binary file pointed to by the buffer objects' URI string or as a binary blob inside a GLB file.
While saving and loading GLTF2 files is mostly handled transparently by the library, there may be some situations where you want a specific type of buffer storage.
For example, if you have a GLTF file that stores all the associated data in .bin files but you want to create a single file, you need to convert the buffers from binary files to data uris or glb binary data.
There is a convenience method named convert_buffers
that can help.
from pygltflib import GLTF2, BufferFormat
gltf = GLTF2().load("glTF-Sample-Models/2.0/Box/glTF/Box.gltf")
gltf.convert_buffers(BufferFormat.DATAURI) # convert buffer URIs to data.
gltf.save_binary("test.glb") # try and save, will get warning.
# Will receive: Warning: Unable to save data uri to glb format.
gltf.convert_buffers(BufferFormat.BINARYBLOB) # convert buffers to GLB blob
gltf.save_binary("test.glb")
gltf.convert_buffers(BufferFormat.BINFILE) # convert buffers to files
gltf.save("test.gltf") # all the buffers are saved in 0.bin, 1.bin, 2.bin.
The image data for textures in GLTF2 files can be stored in the image objects URI string or in an image file pointed to by the image objects' URI string or as part of the buffer.
While saving and loading GLTF2 files is mostly handled transparently by the library, there may be some situations where you want a specific type of image storage.
For example, if you have a GLB file that stores all its image files in .PNG files but you want to create a single GLTF file, you need to convert the images from files to data uris.
Currently converting images to and from the buffer is not supported. Only image files and data uris are supported.
There is a convenience method named convert_images
that can help.
# embed an image file to your GLTF.
from pygltflib.utils import ImageFormat, Image
gltf = GLTF2()
image = Image()
image.uri = "myfile.png"
gltf.images.append(image)
gltf.convert_images(ImageFormat.DATAURI) # image file will be imported into the GLTF
gltf.images[0].uri # will now be something like "..."
gltf.images[0].name # will be myfile.png
# create an image file from GLTF data uris
from pathlib import Path
from pygltflib.utils import ImageFormat, Image
gltf = GLTF2()
image = Image()
image.uri = "..."
image.name = "myfile.png" # optional file name, if not provided, the image files will be called "0.png", "1.png"
gltf.images.append(image)
gltf.convert_images(ImageFormat.FILE) # image file will be imported into the GLTF
gltf.images[0].uri # will be myfile.png
assert Path("myfile.png").exists() is True
The GLTF2 spec allows for extensions to added to any component of a GLTF file.
As of writing (August 2019) there are about a dozen extensions from Khronos and other vendors
In pygltflib, extensions are loaded as ordinary dict
objects and so should be accessed like regular key,value pairs.
For example extensions["KHR_draco_mesh_compression"]["bufferView"]
instead of extensions["KHR_draco_mesh_compression"].bufferView
.
This allows future extensions to be automatically supported by pygltflib.
Extras should work the same way.
The EXT_structural_metadata is a draft (August 2023) extension that defines a means of storing structured metadata within a glTF 2.0 asset.
EXT_structural_metadata
imposes 8-byte binary data alignment requirements on an asset,
allowing support for 64-bit data types while remaining compatible with the 4-byte alignments in the core glTF specification.
To support this meta extension, when pygltflib
detects the presence of this extension in a GLTF2 object (for example, if
EXT_structural_metadata is in self.extensionsUsed
, self.extensionsRequired
, or self.extensions
) will pad chunks using 8-bytes instead of 4.
This alignment value (4 or 8 or indeed any power-of-two value) can be set manually using the set_min_alignment
method.
Using sample models loaded and then saved using this library, here are validator reports (blank is untested). If available, The result of a visual inspection is in brackets next to the validator result.
Model | gltf to gltf | gltf to glb | glb to gltf | glb to glb |
---|---|---|---|---|
2CylinderEngine | passes | passes | passes | passes |
AlphaBlendModeTest | passes | passes | passes | passes |
AnimatedCube | passes | passes | no glb available | no glb available |
AnimatedMorphCube | passes | passes | passes | passes |
AnimatedMorphSphere | passes | passes | passes | passes |
AnimatedTriangle | passes | passes | no glb available | no glb available |
Avocado | passes | passes | passes | passes |
BarramundiFish | passes | passes | passes | passes |
BoomBox | passes | passes | passes | passes |
BoomBoxWithAxes | passes | passes | no glb available | no glb available |
Box | passes | passes | passes | passes |
BoxAnimated | passes | passes | passes | |
BoxInterleaved | passes | passes | passes | |
BoxTextured | passes | passes | ||
BoxTexturedNonPowerOfTwo | passes | passes | ||
BoxVertexColors | passes | passes | ||
BrainStem | passes | passes | passes | |
Buggy | passes | passes | passes | |
Cameras | passes | passes | no glb available | no glb available |
CesiumMan | passes | passes | ||
CesiumMilkTruck | passes | passes | ||
Corset | passes | passes | passes | passes |
Cube | passes | passes | no glb available | no glb available |
DamagedHelmet | passes | passes | passes | passes |
Duck | passes | passes | passes | passes |
FlightHelmet | passes | passes | no glb available | no glb available |
GearboxAssy | passes | passes | ||
Lantern | passes | passes | ||
MetalRoughSpheres | passes | passes | ||
Monster | passes | passes | ||
MultiUVTest | passes | passes | ||
NormalTangentMirrorTest | passes | passes | ||
NormalTangentTest | passes | passes | passes | |
OrientationTest | passes | passes | ||
ReciprocatingSaw | passes | passes | ||
RiggedFigure | passes | passes | ||
RiggedSimple | passes | passes | ||
SciFiHelmet | passes | passes | no glb available | no glb available |
SimpleMeshes | passes | passes | no glb available | no glb available |
SimpleMorph | passes | passes | no glb available | no glb available |
SimpleSparseAccessor | passes | passes | no glb available | no glb available |
SpecGlossVsMetalRough | passes | passes | passes | passes |
Sponza | passes | passes | no glb available | no glb available |
Suzanne | passes | passes | no glb available | no glb available |
TextureCoordinateTest | passes | passes | passes | passes |
TextureSettingsTest | passes | passes | passes | passes |
TextureTransformTest | passes | passes | no glb available | no glb available |
Triangle | passes | passes | no glb available | no glb available |
TriangleWithoutIndices | passes | passes | no glb available | no glb available |
TwoSidedPlane | passes | passes | no glb available | no glb available |
VC | passes | fails | passes | passes |
VertexColorTest | passes | passes | passes | passes |
WaterBottle | passes | passes | passes | passes |
What does pygltflib.utils.validator test? NOTE: At the moment the validator raises an exception when an rule is broken. If you have ideas of the best way to return information on validation warnings/errors please open a ticket on our gitlab.
Rule | validator tests | exception raised |
---|---|---|
accessor.componentType must be valid | yes | InvalidAcccessorComponentTypeException |
accessor min and max arrays must be valid length | yes | InvalidArrayLengthException |
accessor min and max arrays must be same length | yes | MismatchedArrayLengthException |
mesh.primitive.mode must be valid | yes | InvalidMeshPrimitiveMode |
accessor.sparse.indices.componentType must be valid | yes | InvalidAccessorSparseIndicesComponentTypeException |
bufferView byteOffset and byteStrides must be valid | yes | InvalidValueError |
bufferView targets must be valid | yes | InvalidBufferViewTarget |
all other tests | no |
git clone https://github.com/KhronosGroup/glTF-Sample-Models
pytest test_pygltflib.py
FAQs
Python library for reading, writing and managing 3D objects in the Khronos Group gltf and gltf2 formats.
We found that pygltflib demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.