Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
A Python framework for Differential Evolution using pymoo (Blank & Deb, 2020).
Install | Algorithms | Survival Operators | Crowding Metrics | Usage | Structure | Citation | References | Contact | Acknowledgements
First, make sure you have a Python 3 environment installed.
From PyPi:
pip install pymoode
From the current version on github:
pip install git+https://github.com/mooscaliaproject/pymoode
Metrics 'pcd', 'mnn', and '2nn' are recursively recalculated as individuals are removed, to improve the population diversity. Therefore, they are implemented using cython to reduce computational time. If compilation fails, .py files are used instead, which makes it slightly slower.
For more examples, read the docs
import matplotlib.pyplot as plt
from pymoo.problems import get_problem
from pymoo.optimize import minimize
from pymoode.algorithms import GDE3
from pymoode.survival import RankAndCrowding
problem = get_problem("tnk")
pf = problem.pareto_front()
gde3 = GDE3(
pop_size=50, variant="DE/rand/1/bin", CR=0.5, F=(0.0, 0.9),
survival=RankAndCrowding(crowding_func="pcd")
)
res = minimize(problem, gde3, ('n_gen', 200), seed=12)
fig, ax = plt.subplots(figsize=[6, 5], dpi=100)
ax.scatter(pf[:, 0], pf[:, 1], color="navy", label="True Front")
ax.scatter(res.F[:, 0], res.F[:, 1], color="firebrick", label="GDE3")
ax.set_ylabel("$f_2$")
ax.set_xlabel("$f_1$")
ax.legend()
fig.tight_layout()
plt.show()
Alternatively, on the three-objective problem DTLZ2, it would produce amazing results.
problem = get_problem("dtlz2")
gde3mnn = GDE3(
pop_size=150, variant="DE/rand/1/bin", CR=0.5, F=(0.0, 0.9),
survival=RankAndCrowding(crowding_func="mnn")
)
res = minimize(problem, gde3mnn, ('n_gen', 250), seed=12)
pymoode
├───algorithms
│ ├───DE
│ ├───GDE3
│ ├───NSDE
│ └───NSDER
├───survival
│ ├───RankAndCrowding
│ └───ConstrRankAndCrowding
├───performance
│ └───SpacingIndicator
└───operators
├───dem.py
│ └───DEM
├───dex.py
│ └───DEX
└───des.py
└───DES
This package was developed as part of an academic optimization project. Please, if you use it for research purposes, cite it using the published article:
Price, K. V., Storn, R. M. & Lampinen, J. A., 2005. Differential Evolution: A Practical Approach to Global Optimization. 1st ed. Springer: Berlin.
e-mail: bruscalia12@gmail.com
To Julian Blank, who created the amazing structure of pymoo, making such a project possible.
To Esly F. da Costa Junior, for the unconditional support all along.
FAQs
A Python optimization package using Differential Evolution.
We found that pymoode demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.