
Product
Introducing Scala and Kotlin Support in Socket
Socket now supports Scala and Kotlin, bringing AI-powered threat detection to JVM projects with easy manifest generation and fast, accurate scans.
Getting Started | Documentation | Community | Contributing
Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notably, it was designed with these principles in mind:
Pyro was originally developed at Uber AI and is now actively maintained by community contributors, including a dedicated team at the Broad Institute. In 2019, Pyro became a project of the Linux Foundation, a neutral space for collaboration on open source software, open standards, open data, and open hardware.
For more information about the high level motivation for Pyro, check out our launch blog post. For additional blog posts, check out work on experimental design and time-to-event modeling in Pyro.
Install using pip:
pip install pyro-ppl
Install from source:
git clone git@github.com:pyro-ppl/pyro.git
cd pyro
git checkout master # master is pinned to the latest release
pip install .
Install with extra packages:
To install the dependencies required to run the probabilistic models included in the examples
/tutorials
directories, please use the following command:
pip install pyro-ppl[extras]
Make sure that the models come from the same release version of the Pyro source code as you have installed.
For recent features you can install Pyro from source.
Install Pyro using pip:
pip install git+https://github.com/pyro-ppl/pyro.git
or, with the extras
dependency to run the probabilistic models included in the examples
/tutorials
directories:
pip install git+https://github.com/pyro-ppl/pyro.git#egg=project[extras]
Install Pyro from source:
git clone https://github.com/pyro-ppl/pyro
cd pyro
pip install . # pip install .[extras] for running models in examples/tutorials
Refer to the instructions here.
If you use Pyro, please consider citing:
@article{bingham2019pyro,
author = {Eli Bingham and
Jonathan P. Chen and
Martin Jankowiak and
Fritz Obermeyer and
Neeraj Pradhan and
Theofanis Karaletsos and
Rohit Singh and
Paul A. Szerlip and
Paul Horsfall and
Noah D. Goodman},
title = {Pyro: Deep Universal Probabilistic Programming},
journal = {J. Mach. Learn. Res.},
volume = {20},
pages = {28:1--28:6},
year = {2019},
url = {http://jmlr.org/papers/v20/18-403.html}
}
FAQs
A Python library for probabilistic modeling and inference
We found that pyro-ppl demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Product
Socket now supports Scala and Kotlin, bringing AI-powered threat detection to JVM projects with easy manifest generation and fast, accurate scans.
Application Security
/Security News
Socket CEO Feross Aboukhadijeh and a16z partner Joel de la Garza discuss vibe coding, AI-driven software development, and how the rise of LLMs, despite their risks, still points toward a more secure and innovative future.
Research
/Security News
Threat actors hijacked Toptal’s GitHub org, publishing npm packages with malicious payloads that steal tokens and attempt to wipe victim systems.