Latest Threat Research:SANDWORM_MODE: Shai-Hulud-Style npm Worm Hijacks CI Workflows and Poisons AI Toolchains.Details
Socket
Book a DemoInstallSign in
Socket

pysentimiento

Package Overview
Dependencies
Maintainers
1
Versions
36
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

pysentimiento

A Transformer-based library for SocialNLP tasks

pipPyPI
Version
0.7.3
Maintainers
1

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

Tests Test it in Colab

A Transformer-based library for SocialNLP tasks.

Currently supports:

TaskLanguages
Sentiment Analysises, en, it, pt
Hate Speech Detectiones, en, it, pt
Irony Detectiones, en, it, pt
Emotion Analysises, en, it, pt
NER & POS tagginges, en
Contextualized Hate Speech Detectiones
Targeted Sentiment Analysises

Just do pip install pysentimiento and start using it:

Getting Started

from pysentimiento import create_analyzer
analyzer = create_analyzer(task="sentiment", lang="es")

analyzer.predict("Qué gran jugador es Messi")
# returns AnalyzerOutput(output=POS, probas={POS: 0.998, NEG: 0.002, NEU: 0.000})
analyzer.predict("Esto es pésimo")
# returns AnalyzerOutput(output=NEG, probas={NEG: 0.999, POS: 0.001, NEU: 0.000})
analyzer.predict("Qué es esto?")
# returns AnalyzerOutput(output=NEU, probas={NEU: 0.993, NEG: 0.005, POS: 0.002})

analyzer.predict("jejeje no te creo mucho")
# AnalyzerOutput(output=NEG, probas={NEG: 0.587, NEU: 0.408, POS: 0.005})
"""
Emotion Analysis in English
"""

emotion_analyzer = create_analyzer(task="emotion", lang="en")

emotion_analyzer.predict("yayyy")
# returns AnalyzerOutput(output=joy, probas={joy: 0.723, others: 0.198, surprise: 0.038, disgust: 0.011, sadness: 0.011, fear: 0.010, anger: 0.009})
emotion_analyzer.predict("fuck off")
# returns AnalyzerOutput(output=anger, probas={anger: 0.798, surprise: 0.055, fear: 0.040, disgust: 0.036, joy: 0.028, others: 0.023, sadness: 0.019})

"""
Hate Speech (misogyny & racism)
"""
hate_speech_analyzer = create_analyzer(task="hate_speech", lang="es")

hate_speech_analyzer.predict("Esto es una mierda pero no es odio")
# returns AnalyzerOutput(output=[], probas={hateful: 0.022, targeted: 0.009, aggressive: 0.018})
hate_speech_analyzer.predict("Esto es odio porque los inmigrantes deben ser aniquilados")
# returns AnalyzerOutput(output=['hateful'], probas={hateful: 0.835, targeted: 0.008, aggressive: 0.476})

hate_speech_analyzer.predict("Vaya guarra barata y de poca monta es XXXX!")
# returns AnalyzerOutput(output=['hateful', 'targeted', 'aggressive'], probas={hateful: 0.987, targeted: 0.978, aggressive: 0.969})

See TASKS for more details on the supported tasks and languages, and also for reported performance for each benchmarked model.

Also, check these notebooks with examples of how to use pysentimiento for each language:

Preprocessing

pysentimiento features a tweet preprocessor specially suited for tweet classification with transformer-based models.

from pysentimiento.preprocessing import preprocess_tweet

# Replaces user handles and URLs by special tokens
preprocess_tweet("@perezjotaeme debería cambiar esto http://bit.ly/sarasa") # "@usuario debería cambiar esto url"

# Shortens repeated characters
preprocess_tweet("no entiendo naaaaaaaadaaaaaaaa", shorten=2) # "no entiendo naadaa"

# Normalizes laughters
preprocess_tweet("jajajajaajjajaajajaja no lo puedo creer ajajaj") # "jaja no lo puedo creer jaja"

# Handles hashtags
preprocess_tweet("esto es #UnaGenialidad")
# "esto es una genialidad"

# Handles emojis
preprocess_tweet("🎉🎉", lang="en")
# 'emoji party popper emoji emoji party popper emoji'

Instructions for developers

  • Clone and install
git clone https://github.com/pysentimiento/pysentimiento
pip install poetry
poetry shell
poetry install
  • Run script to train models

Check TRAIN.md for further information on how to train your models

Note: you need access to the datasets, which are not public for the time being. Send us an email to get access to them.

  • Upload models to Huggingface's Model Hub

Check "Model sharing and upload" instructions in huggingface docs.

License

pysentimiento is an open-source library. However, please be aware that models are trained with third-party datasets and are subject to their respective licenses, many of which are for non-commercial use

Suggestions and bugfixes

Please use the repository issue tracker to point out bugs and make suggestions (new models, use another datasets, some other languages, etc)

Citation

If you use pysentimiento in your work, please cite this paper

@misc{perez2021pysentimiento,
      title={pysentimiento: A Python Toolkit for Opinion Mining and Social NLP tasks}, 
      author={Juan Manuel Pérez and Mariela Rajngewerc and Juan Carlos Giudici and Damián A. Furman and Franco Luque and Laura Alonso Alemany and María Vanina Martínez},
      year={2023},
      eprint={2106.09462},a
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Also, pleace cite related pre-trained models and datasets for the specific models you use. Check REFERENCES for details.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts