pyspellchecker
.. image:: https://img.shields.io/badge/license-MIT-blue.svg
:target: https://opensource.org/licenses/MIT/
:alt: License
.. image:: https://img.shields.io/github/release/barrust/pyspellchecker.svg
:target: https://github.com/barrust/pyspellchecker/releases
:alt: GitHub release
.. image:: https://github.com/barrust/pyspellchecker/workflows/Python%20package/badge.svg
:target: https://github.com/barrust/pyspellchecker/actions?query=workflow%3A%22Python+package%22
:alt: Build Status
.. image:: https://codecov.io/gh/barrust/pyspellchecker/branch/master/graph/badge.svg?token=OdETiNgz9k
:target: https://codecov.io/gh/barrust/pyspellchecker
:alt: Test Coverage
.. image:: https://badge.fury.io/py/pyspellchecker.svg
:target: https://badge.fury.io/py/pyspellchecker
:alt: PyPi Package
.. image:: http://pepy.tech/badge/pyspellchecker
:target: https://pepy.tech/project/pyspellchecker
:alt: Downloads
Pure Python Spell Checking based on Peter Norvig's <https://norvig.com/spell-correct.html>
__ blog post on setting
up a simple spell checking algorithm.
It uses a Levenshtein Distance <https://en.wikipedia.org/wiki/Levenshtein_distance>
__
algorithm to find permutations within an edit distance of 2 from the
original word. It then compares all permutations (insertions, deletions,
replacements, and transpositions) to known words in a word frequency
list. Those words that are found more often in the frequency list are
more likely the correct results.
pyspellchecker
supports multiple languages including English, Spanish,
German, French, Portuguese, Arabic and Basque. For information on how the dictionaries were
created and how they can be updated and improved, please see the
Dictionary Creation and Updating section of the readme!
pyspellchecker
supports Python 3
pyspellchecker
allows for the setting of the Levenshtein Distance (up to two) to check.
For longer words, it is highly recommended to use a distance of 1 and not the
default 2. See the quickstart to find how one can change the distance parameter.
Installation
The easiest method to install is using pip:
.. code:: bash
pip install pyspellchecker
To build from source:
.. code:: bash
git clone https://github.com/barrust/pyspellchecker.git
cd pyspellchecker
python -m build
For python 2.7 support, install release 0.5.6 <https://github.com/barrust/pyspellchecker/releases/tag/v0.5.6>
__
but note that no future updates will support python 2.
.. code:: bash
pip install pyspellchecker==0.5.6
Quickstart
After installation, using pyspellchecker
should be fairly straight
forward:
.. code:: python
from spellchecker import SpellChecker
spell = SpellChecker()
# find those words that may be misspelled
misspelled = spell.unknown(['something', 'is', 'hapenning', 'here'])
for word in misspelled:
# Get the one `most likely` answer
print(spell.correction(word))
# Get a list of `likely` options
print(spell.candidates(word))
If the Word Frequency list is not to your liking, you can add additional
text to generate a more appropriate list for your use case.
.. code:: python
from spellchecker import SpellChecker
spell = SpellChecker() # loads default word frequency list
spell.word_frequency.load_text_file('./my_free_text_doc.txt')
# if I just want to make sure some words are not flagged as misspelled
spell.word_frequency.load_words(['microsoft', 'apple', 'google'])
spell.known(['microsoft', 'google']) # will return both now!
If the words that you wish to check are long, it is recommended to reduce the
distance
to 1. This can be accomplished either when initializing the spell
check class or after the fact.
.. code:: python
from spellchecker import SpellChecker
spell = SpellChecker(distance=1) # set at initialization
# do some work on longer words
spell.distance = 2 # set the distance parameter back to the default
Non-English Dictionaries
pyspellchecker
supports several default dictionaries as part of the default
package. Each is simple to use when initializing the dictionary:
.. code:: python
from spellchecker import SpellChecker
english = SpellChecker() # the default is English (language='en')
spanish = SpellChecker(language='es') # use the Spanish Dictionary
russian = SpellChecker(language='ru') # use the Russian Dictionary
arabic = SpellChecker(language='ar') # use the Arabic Dictionary
The currently supported dictionaries are:
- English - 'en'
- Spanish - 'es'
- French - 'fr'
- Portuguese - 'pt'
- German - 'de'
- Italian - 'it'
- Russian - 'ru'
- Arabic - 'ar'
- Basque - 'eu'
- Latvian - 'lv'
- Dutch - 'nl'
Dictionary Creation and Updating
The creation of the dictionaries is, unfortunately, not an exact science. I have provided a script that, given a text file of sentences (in this case from
OpenSubtitles <http://opus.nlpl.eu/OpenSubtitles2018.php>
__) it will generate a word frequency list based on the words found within the text. The script then attempts to clean up the word frequency by, for example, removing words with invalid characters (usually from other languages), removing low count terms (misspellings?) and attempts to enforce rules as available (no more than one accent per word in Spanish). Then it removes words from a list of known words that are to be removed. It then adds words into the dictionary that are known to be missing or were removed for being too low frequency.
The script can be found here: ``scripts/build_dictionary.py. The original word frequency list parsed from OpenSubtitles can be found in the
scripts/data/``` folder along with each language's include and exclude text files.
Any help in updating and maintaining the dictionaries would be greatly desired. To do this, a
discussion <https://github.com/barrust/pyspellchecker/discussions>
__ could be started on GitHub or pull requests to update the include and exclude files could be added.
Additional Methods
On-line documentation <http://pyspellchecker.readthedocs.io/en/latest/>
__ is available; below contains the cliff-notes version of some of the available functions:
correction(word)
: Returns the most probable result for the
misspelled word
candidates(word)
: Returns a set of possible candidates for the
misspelled word
known([words])
: Returns those words that are in the word frequency
list
unknown([words])
: Returns those words that are not in the frequency
list
word_probability(word)
: The frequency of the given word out of all
words in the frequency list
The following are less likely to be needed by the user but are available:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
edit_distance_1(word)
: Returns a set of all strings at a Levenshtein
Distance of one based on the alphabet of the selected language
edit_distance_2(word)
: Returns a set of all strings at a Levenshtein
Distance of two based on the alphabet of the selected language
Credits
Peter Norvig <https://norvig.com/spell-correct.html>
__ blog post on setting up a simple spell checking algorithm- P Lison and J Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016)