![Create React App Officially Deprecated Amid React 19 Compatibility Issues](https://cdn.sanity.io/images/cgdhsj6q/production/04fa08cf844d798abc0e1a6391c129363cc7e2ab-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Create React App Officially Deprecated Amid React 19 Compatibility Issues
Create React App is officially deprecated due to React 19 issues and lack of maintenance—developers should switch to Vite or other modern alternatives.
redis-data-structures
Advanced tools
Redis-backed data structures for building scalable and resilient applications
A Python library providing high-level, Redis-backed data structures with a clean, Pythonic interface. Perfect for distributed systems, microservices, and any application requiring persistent, thread-safe data structures, especially in environments where multiple workers share the same data structure.
💡 Examples
pip install redis-data-structures
Note: Ensure that Redis is running for the library to function properly.
from redis_data_structures import Queue, Stack, Set, ConnectionManager
# Initialize connection
conn = ConnectionManager(host='localhost', port=6379, db=0)
# Create and use data structures
queue = Queue("tasks", connection_manager=conn)
queue.push({'id': 1, 'action': 'process'})
stack = Stack("commands", connection_manager=conn)
stack.push({'action': 'create'})
set_ds = Set("users", connection_manager=conn)
set_ds.add({'id': 'user1', 'name': 'Alice'})
You can also skip using ConnectionManager
if the following environment variables are set:
REDIS_HOST
REDIS_PORT
REDIS_DB
REDIS_USERNAME
REDIS_PASSWORD
from redis_data_structures import Queue, Stack, Set
queue = Queue("test_queue")
stack = Stack("test_stack")
set_ds = Set("test_set")
Refer to initialization for more information.
Structure | Description | Use Case |
---|---|---|
Queue | FIFO queue | Job processing, message passing |
Stack | LIFO stack | Undo systems, execution contexts |
Set | Unique collection | Membership testing, deduplication |
Dict | Python-like dictionary (key-value store) | Caching, metadata storage |
HashMap | Key-value store | Caching, metadata storage |
PriorityQueue | Priority-based queue | Task scheduling |
RingBuffer | Fixed-size circular buffer | Logs, metrics |
Graph | Graph with adjacency list | Relationships, networks |
Trie | Prefix tree | Autocomplete, spell checking |
BloomFilter | Probabilistic set | Membership testing |
Deque | Double-ended queue | Sliding windows |
from redis_data_structures import Queue
queue = Queue("tasks")
# Basic operations
queue.push({'id': 1, 'action': 'process'})
task = queue.pop()
size = queue.size()
stack = Stack("commands")
stack.push({'action': 'create'})
command = stack.pop()
size = stack.size()
set_ds = Set("users")
set_ds.add({'id': 'user1'})
exists = set_ds.contains({'id': 'user1'})
members = set_ds.members()
hash_map = HashMap("users")
hash_map.set('user:1', {'name': 'Alice', 'age': 30})
user = hash_map.get('user:1')
exists = hash_map.exists('user:1')
priority_queue = PriorityQueue("tasks")
priority_queue.push({'id': 1, 'priority': 1})
task = priority_queue.pop()
peek = priority_queue.peek()
...
For more examples, see examples.
from redis_data_structures import ConnectionManager
from datetime import timedelta
conn = ConnectionManager(
host='localhost',
port=6379,
db=0,
max_connections=20,
retry_max_attempts=5,
circuit_breaker_threshold=10,
circuit_breaker_timeout=timedelta(minutes=5),
ssl=True
)
# Reuse for multiple queues
pq1 = PriorityQueue("tasks", connection_manager=conn)
pq2 = PriorityQueue("tasks", connection_manager=conn)
stack = Stack("commands", connection_manager=conn)
set_ds = Set("users", connection_manager=conn)
from redis_data_structures import LRUCache, HashMap, SerializableType
from datetime import datetime, timezone
from pydantic import BaseModel
class User(SerializableType):
"""Example of a custom Redis data type using standard class."""
def __init__(self, name: str, joined: datetime):
"""Initialize the User object."""
self.name = name
self.joined = joined
def to_dict(self) -> dict:
"""Convert the User object to a dictionary."""
return {
"name": self.name,
"joined": self.joined.isoformat(), # Convert datetime to string
}
@classmethod
def from_dict(cls, data: dict) -> "User":
"""Create a User object from a dictionary."""
return cls(
name=data["name"],
joined=datetime.fromisoformat(data["joined"]), # Convert string back to datetime
)
def __eq__(self, other) -> bool:
"""Override __eq__ for proper equality comparison."""
return (
isinstance(other, User) and
self.name == other.name and
self.joined == other.joined
)
def __str__(self) -> str:
"""Return a string representation of the User object."""
return f"User(name='{self.name}', joined={self.joined.isoformat()})"
class Address(BaseModel):
"""Nested Pydantic model for demonstration."""
street: str
city: str
country: str
postal_code: Optional[str] = None
class UserModel(BaseModel):
"""Example of a Pydantic model - works automatically with Redis structures."""
name: str
email: str
age: int = Field(gt=0, lt=150)
joined: datetime
address: Optional[Address] = None
tags: Set[str] = set()
def __str__(self) -> str:
"""Return a string representation of the UserModel instance."""
return f"UserModel(name='{self.name}', email='{self.email}', age={self.age})"
# Initialize data structures
cache = LRUCache("test_cache", capacity=1000) # Using default connection settings
hash_map = HashMap("type_demo_hash") # Using default connection settings
# Example 1: Basic Python Types
data = {
"string": "hello",
"integer": 42,
"float": 3.14,
"boolean": True,
"none": None,
}
for key, value in data.items():
hash_map.set(key, value)
result = hash_map.get(key)
# Example 2: Collections
collections = {
"tuple": (1, "two", 3.0),
"list": [1, 2, 3, "four"],
"set": {1, 2, 3, 4},
"dict": {"a": 1, "b": 2},
}
for key, value in collections.items():
hash_map.set(key, value)
result = hash_map.get(key)
# Example 3: DateTime Types
now = datetime.now(timezone.utc)
hash_map.set("datetime", now)
result = hash_map.get("datetime")
# Example 4: Custom Type
user = User("John Doe", datetime.now(timezone.utc))
hash_map.set("custom_user", user)
result = hash_map.get("custom_user")
# Example 5: Pydantic Models
user_model = UserModel(
name="Jane Smith",
email="jane@example.com",
age=30,
joined=datetime.now(timezone.utc),
address=Address(
street="123 Main St",
city="New York",
country="USA",
postal_code="10001",
),
tags={"developer", "python"},
)
# Store in different data structures
cache.put("pydantic_user", user_model)
hash_map.set("pydantic_user", user_model)
# Retrieve and verify
cache_result = cache.get("pydantic_user")
hash_result = hash_map.get("pydantic_user")
# Example 6: Nested Structures
nested_data = {
"user": user,
"model": user_model,
"list": [1, user, user_model],
"tuple": (user, user_model),
"dict": {
"user": user,
"model": user_model,
"date": now,
},
}
hash_map.set("nested", nested_data)
result = hash_map.get("nested")
Important Note for Distributed Systems: In scenarios where some processes only consume data (without storing any), you need to manually register types before deserializing since the type registering is only automatically done when storing data. This is common in worker processes, read-only replicas, or monitoring systems. Example:
from redis_data_structures import RedisDataStructure # In consumer processes, register types before reading data redis_structure = RedisDataStructure(key="my_key") # Register your custom types redis_structure.register_types(User) # For SerializableType classes redis_structure.register_types(UserModel) # For Pydantic models # Register multiple types at once redis_structure.register_types([User, UserModel]) # For multiple types # Now you can safely deserialize data user = hash_map.get("custom_user") # Will correctly deserialize as User instance model = hash_map.get("pydantic_user") # Will correctly deserialize as UserModel instance
See type preservation for more information.
git checkout -b feature/amazing-feature
)git commit -m 'Add amazing feature'
)git push origin feature/amazing-feature
)This project is licensed under the MIT License - see the LICENSE file for details.
FAQs
Redis-backed data structures for building scalable and resilient applications
We found that redis-data-structures demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Create React App is officially deprecated due to React 19 issues and lack of maintenance—developers should switch to Vite or other modern alternatives.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.