
Product
Introducing Tier 1 Reachability: Precision CVE Triage for Enterprise Teams
Socket’s new Tier 1 Reachability filters out up to 80% of irrelevant CVEs, so security teams can focus on the vulnerabilities that matter.
This package is python version of R package scorecard. Its goal is to make the development of traditional credit risk scorecard model easier and efficient by providing functions for some common tasks.
split_df
)iv
, var_filter
)woebin
, woebin_plot
, woebin_adj
, woebin_ply
)scorecard
, scorecard_ply
)perf_eva
, perf_psi
)scorecardpy
from PYPI with:pip install scorecardpy
scorecardpy
from github with:pip install git+git://github.com/shichenxie/scorecardpy.git
This is a basic example which shows you how to develop a common credit risk scorecard:
# Traditional Credit Scoring Using Logistic Regression
import scorecardpy as sc
# data prepare ------
# load germancredit data
dat = sc.germancredit()
# filter variable via missing rate, iv, identical value rate
dt_s = sc.var_filter(dat, y="creditability")
# breaking dt into train and test
train, test = sc.split_df(dt_s, 'creditability').values()
# woe binning ------
bins = sc.woebin(dt_s, y="creditability")
# sc.woebin_plot(bins)
# binning adjustment
# # adjust breaks interactively
# breaks_adj = sc.woebin_adj(dt_s, "creditability", bins)
# # or specify breaks manually
breaks_adj = {
'age.in.years': [26, 35, 40],
'other.debtors.or.guarantors': ["none", "co-applicant%,%guarantor"]
}
bins_adj = sc.woebin(dt_s, y="creditability", breaks_list=breaks_adj)
# converting train and test into woe values
train_woe = sc.woebin_ply(train, bins_adj)
test_woe = sc.woebin_ply(test, bins_adj)
y_train = train_woe.loc[:,'creditability']
X_train = train_woe.loc[:,train_woe.columns != 'creditability']
y_test = test_woe.loc[:,'creditability']
X_test = test_woe.loc[:,train_woe.columns != 'creditability']
# logistic regression ------
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(penalty='l1', C=0.9, solver='saga', n_jobs=-1)
lr.fit(X_train, y_train)
# lr.coef_
# lr.intercept_
# predicted proability
train_pred = lr.predict_proba(X_train)[:,1]
test_pred = lr.predict_proba(X_test)[:,1]
# performance ks & roc ------
train_perf = sc.perf_eva(y_train, train_pred, title = "train")
test_perf = sc.perf_eva(y_test, test_pred, title = "test")
# score ------
card = sc.scorecard(bins_adj, lr, X_train.columns)
# credit score
train_score = sc.scorecard_ply(train, card, print_step=0)
test_score = sc.scorecard_ply(test, card, print_step=0)
# psi
sc.perf_psi(
score = {'train':train_score, 'test':test_score},
label = {'train':y_train, 'test':y_test}
)
FAQs
Credit Risk Scorecard
We found that scorecardpy demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Product
Socket’s new Tier 1 Reachability filters out up to 80% of irrelevant CVEs, so security teams can focus on the vulnerabilities that matter.
Research
/Security News
Ongoing npm supply chain attack spreads to DuckDB: multiple packages compromised with the same wallet-drainer malware.
Security News
The MCP Steering Committee has launched the official MCP Registry in preview, a central hub for discovering and publishing MCP servers.