New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

scvelo

Package Overview
Dependencies
Maintainers
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

scvelo

RNA velocity generalized through dynamical modeling

  • 0.3.3
  • Source
  • PyPI
  • Socket score

Maintainers
2

PyPi PyPIDownloads CI

scVelo - RNA velocity generalized through dynamical modeling

scVelo is a scalable toolkit for RNA velocity analysis in single cells; RNA velocity enables the recovery of directed dynamic information by leveraging splicing kinetics 1. scVelo collects different methods for inferring RNA velocity using an expectation-maximization framework 2, deep generative modeling 3, or metabolically labeled transcripts4.

scVelo's key applications

  • estimate RNA velocity to study cellular dynamics.
  • identify putative driver genes and regimes of regulatory changes.
  • infer a latent time to reconstruct the temporal sequence of transcriptomic events.
  • estimate reaction rates of transcription, splicing and degradation.
  • use statistical tests, e.g., to detect different kinetics regimes.

Citing scVelo

If you include or rely on scVelo when publishing research, please adhere to the following citation guide:

EM and steady-state model

If you use the EM (dynamical) or steady-state model, cite

@article{Bergen2020,
  title = {Generalizing RNA velocity to transient cell states through dynamical modeling},
  volume = {38},
  ISSN = {1546-1696},
  url = {http://dx.doi.org/10.1038/s41587-020-0591-3},
  DOI = {10.1038/s41587-020-0591-3},
  number = {12},
  journal = {Nature Biotechnology},
  publisher = {Springer Science and Business Media LLC},
  author = {Bergen, Volker and Lange, Marius and Peidli, Stefan and Wolf, F. Alexander and Theis, Fabian J.},
  year = {2020},
  month = aug,
  pages = {1408–1414}
}

RNA velocity inference through metabolic labeling information

If you use the implemented method for estimating RNA velocity from metabolic labeling information, cite

@article{Weiler2024,
  author = {Weiler, Philipp and Lange, Marius and Klein, Michal and Pe'er, Dana and Theis, Fabian},
  publisher = {Springer Science and Business Media LLC},
  url = {http://dx.doi.org/10.1038/s41592-024-02303-9},
  doi = {10.1038/s41592-024-02303-9},
  issn = {1548-7105},
  journal = {Nature Methods},
  month = jun,
  number = {7},
  pages = {1196--1205},
  title = {CellRank 2: unified fate mapping in multiview single-cell data},
  volume = {21},
  year = {2024},
}

Support

Found a bug or would like to see a feature implemented? Feel free to submit an issue. Have a question or would like to start a new discussion? Head over to GitHub discussions. Your help to improve scVelo is highly appreciated. For further information visit scvelo.org.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc