
Security News
MCP Community Begins Work on Official MCP Metaregistry
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
Simple tool to change the INPUT and OUTPUT shape of ONNX.
https://github.com/PINTO0309/simple-onnx-processing-tools
### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc
### run
$ pip install -U onnx \
&& pip install -U sio4onnx
https://github.com/PINTO0309/simple-onnx-processing-tools#docker
$ sio4onnx -h
usage:
sio4onnx [-h]
-if INPUT_ONNX_FILE_PATH
-of OUTPUT_ONNX_FILE_PATH
-i INPUT_NAMES
-is INPUT_SHAPES [INPUT_SHAPES ...]
-o OUTPUT_NAMES
-os OUTPUT_SHAPES [OUTPUT_SHAPES ...]
[-n]
optional arguments:
-h, --help
Show this help message and exit.
-if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
INPUT ONNX file path
-of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
OUTPUT ONNX file path
-i INPUT_NAMES, --input_names INPUT_NAMES
List of input OP names. All input OPs of the model must be specified.
The order is unspecified, but must match the order specified for input_shapes.
e.g.
--input_names "input.A" \
--input_names "input.B" \
--input_names "input.C"
-is INPUT_SHAPES [INPUT_SHAPES ...], --input_shapes INPUT_SHAPES [INPUT_SHAPES ...]
List of input OP shapes. All input OPs of the model must be specified.
The order is unspecified, but must match the order specified for input_names.
e.g.
--input_shapes 1 3 "H" "W" \
--input_shapes "N" 3 "H" "W" \
--input_shapes "-1" 3 480 640
-o OUTPUT_NAMES, --output_names OUTPUT_NAMES
List of output OP names. All output OPs of the model must be specified.
The order is unspecified, but must match the order specified for output_shapes.
e.g.
--output_names "output.a" \
--output_names "output.b" \
--output_names "output.c"
-os OUTPUT_SHAPES [OUTPUT_SHAPES ...], --output_shapes OUTPUT_SHAPES [OUTPUT_SHAPES ...]
List of input OP shapes. All output OPs of the model must be specified.
The order is unspecified, but must match the order specified for output_shapes.
e.g.
--output_shapes 1 3 "H" "W" \
--output_shapes "N", 3, "H", "W" \
--output_shapes "-1" 3 480 640
-n, --non_verbose
Do not show all information logs. Only error logs are displayed.
>>> from sio4onnx import io_change
>>> help(io_change)
Help on function io_change in module sio4onnx.onnx_input_output_variable_changer:
io_change(
input_onnx_file_path: Union[str, NoneType] = '',
onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
output_onnx_file_path: Union[str, NoneType] = '',
input_names: Union[List[str], NoneType] = [],
input_shapes: Union[List[Union[int, str]], NoneType] = [],
output_names: Union[List[str], NoneType] = [],
output_shapes: Union[List[Union[int, str]], NoneType] = [],
non_verbose: Union[bool, NoneType] = False,
) -> onnx.onnx_ml_pb2.ModelProto
Parameters
----------
input_onnx_file_path: Optional[str]
Input onnx file path.
Either input_onnx_file_path or onnx_graph must be specified.
Default: ''
onnx_graph: Optional[onnx.ModelProto]
onnx.ModelProto.
Either input_onnx_file_path or onnx_graph must be specified.
onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
output_onnx_file_path: Optional[str]
Output onnx file path. If not specified, no ONNX file is output.
Default: ''
input_names: Optional[List[str]]
List of input OP names. All input OPs of the model must be specified.
The order is unspecified, but must match the order specified for input_shapes.
e.g. ['input.A', 'input.B', 'input.C']
input_shapes: Optional[List[Union[int, str]]]
List of input OP shapes. All input OPs of the model must be specified.
The order is unspecified, but must match the order specified for input_names.
e.g.
[
[1, 3, 'H', 'W'],
['N', 3, 'H', 'W'],
['-1', 3, 480, 640],
]
output_names: Optional[List[str]]
List of output OP names. All output OPs of the model must be specified.
The order is unspecified, but must match the order specified for output_shapes.
e.g. ['output.a', 'output.b', 'output.c']
output_shapes: Optional[List[Union[int, str]]]
List of input OP shapes. All output OPs of the model must be specified.
The order is unspecified, but must match the order specified for output_shapes.
e.g.
[
[1, 3, 'H', 'W'],
['N', 3, 'H', 'W'],
['-1', 3, 480, 640],
]
non_verbose: Optional[bool]
Do not show all information logs. Only error logs are displayed.
Default: False
Returns
-------
io_changed_graph: onnx.ModelProto
onnx ModelProto with modified INPUT and OUTPUT shapes.
$ sio4onnx \
--input_onnx_file_path yolov3-10.onnx \
--output_onnx_file_path yolov3-10_upd.onnx \
--input_names "input_1" \
--input_names "image_shape" \
--input_shapes "batch" 3 "H" "W" \
--input_shapes "batch" 2 \
--output_names "yolonms_layer_1/ExpandDims_1:0" \
--output_names "yolonms_layer_1/ExpandDims_3:0" \
--output_names "yolonms_layer_1/concat_2:0" \
--output_shapes 1 "boxes" 4 \
--output_shapes 1 "classes" "boxes" \
--output_shapes "boxes" 3
from sio4onnx import io_change
io_changed_graph = io_change(
input_onnx_file_path="yolov3-10.onnx",
output_onnx_file_path="yolov3-10_upd.onnx",
input_names=[
"input_1",
"image_shape",
],
input_shapes=[
["batch", 3, "H", "W"],
["batch", 2],
],
output_names=[
"yolonms_layer_1/ExpandDims_1:0",
"yolonms_layer_1/ExpandDims_3:0",
"yolonms_layer_1/concat_2:0",
],
output_shapes=[
[1, "boxes", 4],
[1, "classes", "boxes"],
["boxes", 3],
],
)
FAQs
Simple tool to change the INPUT and OUTPUT shape of ONNX.
We found that sio4onnx demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
Research
Security News
Socket uncovers an npm Trojan stealing crypto wallets and BullX credentials via obfuscated code and Telegram exfiltration.
Research
Security News
Malicious npm packages posing as developer tools target macOS Cursor IDE users, stealing credentials and modifying files to gain persistent backdoor access.