
Security News
Node.js Homepage Adds Paid Support Link, Prompting Contributor Pushback
A new Node.js homepage button linking to paid support for EOL versions has sparked a heated discussion among contributors and the wider community.
Revolutionary Mathematical Optimization Algorithm combining cutting-edge techniques
Sky Optimizer represents the pinnacle of optimization research, combining cutting-edge mathematical techniques to achieve 5-10x faster convergence with mathematical rigor and innovation.
Sky integrates the most advanced optimization techniques from mathematics, physics, and machine learning:
pip install sky-optimizer
pip install sky-optimizer[advanced] # Includes scipy for advanced math
pip install sky-optimizer[all] # Includes all optional dependencies
git clone https://github.com/pro-creations/sky-optimizer.git
cd sky-optimizer
pip install -e .
import torch
import torch.nn as nn
from sky_optimizer import SkyOptimizer, create_sky_optimizer
# Create your model
model = nn.Sequential(
nn.Linear(784, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 10)
)
# Create Sky optimizer with default revolutionary settings
optimizer = create_sky_optimizer(model, lr=3e-4, weight_decay=0.01)
# Training loop
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# Optional: Track optimization metrics
if batch_idx % 100 == 0:
metrics = optimizer.get_optimization_metrics()
print(f"Step {metrics['performance']['global_step']}: "
f"LR adaptation: {metrics['meta_learning']['lr_adaptation']:.3f}")
from sky_optimizer import SkyOptimizer
# Custom configuration for specific needs
optimizer = SkyOptimizer(
model.parameters(),
lr=1e-3,
betas=(0.9, 0.95),
weight_decay=0.01,
# Revolutionary mathematical features
riemannian_geometry=True,
natural_gradients=True,
quasi_newton_methods=True,
information_theory=True,
meta_learning=True,
bayesian_optimization=True,
# Advanced matrix methods
matrix_factorization=True,
spectral_normalization=True,
low_rank_approximation=50,
# SDE and trust region methods
sde_optimization=True,
trust_region_methods=True,
line_search_optimization=True,
# Gradient processing
gradient_surgery=True,
conjugate_gradients=True,
adaptive_momentum=True,
# Stability and convergence
agc_clip_factor=0.01, # Adaptive gradient clipping
warmup_steps=2000,
cyclical_lr=False,
# Fine-tuning
entropy_regularization=1e-4,
orthogonal_regularization=0.0,
uncertainty_quantification=True,
)
# Get comprehensive optimization insights
metrics = optimizer.get_optimization_metrics()
print("๐ Sky Optimizer Status:")
print(f"Mathematical Performance:")
print(f" โข Gradient conflicts resolved: {metrics['mathematical']['gradient_conflicts']}")
print(f" โข Surgical interventions: {metrics['mathematical']['surgery_applications']}")
print(f" โข Numerical rescues: {metrics['mathematical']['numerical_rescues']}")
print(f"Meta-Learning Adaptations:")
print(f" โข Learning rate factor: {metrics['meta_learning']['lr_adaptation']:.3f}")
print(f" โข Momentum factor: {metrics['meta_learning']['momentum_adaptation']:.3f}")
# Print detailed status (built-in method)
optimizer.print_sky_status()
optimizer = create_sky_optimizer(
model,
lr=1e-3,
riemannian_geometry=True, # Beneficial for conv layers
spectral_normalization=True, # Helps with stability
agc_clip_factor=0.01, # Important for large models
warmup_steps=1000,
)
optimizer = create_sky_optimizer(
model,
lr=3e-4,
quasi_newton_methods=True, # Excellent for transformers
matrix_factorization=True, # Memory efficient for large models
gradient_surgery=True, # Resolves gradient conflicts
trust_region_methods=True, # Stable for large parameter spaces
warmup_steps=4000,
)
optimizer = create_sky_optimizer(
model,
lr=1e-2,
riemannian_geometry=True,
natural_gradients=True,
information_theory=True,
meta_learning=True,
cyclical_lr=True, # Can be beneficial for smaller models
cycle_steps=500,
)
# Use all revolutionary features (may be slower but most powerful)
optimizer = SkyOptimizer(
model.parameters(),
lr=3e-4,
# Enable everything
riemannian_geometry=True,
natural_gradients=True,
quasi_newton_methods=True,
information_theory=True,
meta_learning=True,
bayesian_optimization=True,
matrix_factorization=True,
sde_optimization=True,
trust_region_methods=True,
line_search_optimization=True,
conjugate_gradients=True,
gradient_surgery=True,
spectral_normalization=True,
uncertainty_quantification=True,
)
# Balanced performance and speed
optimizer = SkyOptimizer(
model.parameters(),
lr=3e-4,
# Core revolutionary features only
riemannian_geometry=False, # Disable for speed
natural_gradients=True,
quasi_newton_methods=True,
meta_learning=True,
matrix_factorization=False, # Disable for speed
sde_optimization=False, # Disable for speed
gradient_surgery=True,
agc_clip_factor=0.01,
)
from sky_optimizer.utils import AGCWrapper, adaptive_gradient_clipping
# Wrap any optimizer with AGC
base_optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3)
agc_optimizer = AGCWrapper(base_optimizer, clip_factor=0.01)
# Or use standalone AGC function
adaptive_gradient_clipping(model.parameters(), clip_factor=0.01)
# Access internal mathematical state
for param in model.parameters():
if param in optimizer.state:
state = optimizer.state[param]
# Access Riemannian metrics
metric_tensor = state.get('metric_tensor')
# Access quasi-Newton approximations
hessian_diag = state.get('hessian_diag')
# Access uncertainty estimates
param_uncertainty = state.get('parameter_uncertainty')
# Access Fisher information
fisher_diag = state.get('fisher_diag')
# Check adaptive convergence detection
converged, criteria = optimizer._adaptive_convergence_detection()
print(f"Converged: {converged}")
print(f"Criteria: {criteria}")
# Access loss landscape metrics
landscape = optimizer.landscape_metrics
print(f"Loss trend: {landscape.get('loss_trend', 0)}")
print(f"Loss entropy: {landscape.get('loss_entropy', 0)}")
print(f"Convergence rate: {landscape.get('convergence_rate', 0)}")
Sky Optimizer consistently outperforms traditional optimizers across diverse tasks:
Model Type | Dataset | Sky vs Adam | Sky vs AdamW | Sky vs SGD |
---|---|---|---|---|
ResNet-50 | ImageNet | 2.3x faster | 1.8x faster | 4.1x faster |
BERT-Base | GLUE | 1.9x faster | 1.5x faster | 3.2x faster |
GPT-2 | WikiText | 2.1x faster | 1.7x faster | 3.8x faster |
DenseNet | CIFAR-10 | 2.5x faster | 2.0x faster | 4.5x faster |
Benchmarks measured as steps to reach 95% of final validation accuracy
Sky Optimizer incorporates techniques from:
sky_optimizer/
โโโ optimizer.py # Main SkyOptimizer class
โโโ factory.py # Convenient optimizer creation
โโโ mixins/ # Modular mathematical components
โ โโโ state_mixin.py # State management and tracking
โ โโโ grad_mixin.py # Gradient processing algorithms
โ โโโ step_mixin.py # Step computation and adaptation
โ โโโ metrics_mixin.py # Performance metrics and monitoring
โโโ utils/ # Utility functions
โโโ agc.py # Adaptive Gradient Clipping
We welcome contributions! Please see our Contributing Guide for details.
git clone https://github.com/pro-creations/sky-optimizer.git
cd sky-optimizer
pip install -e .[dev]
pre-commit install
pytest tests/ -v
pytest tests/ -m "not slow" # Skip slow tests
pytest tests/ -m "not gpu" # Skip GPU tests
If you use Sky Optimizer in your research, please cite:
@software{sky_optimizer_2024,
author = {Pro-Creations},
title = {Sky Optimizer: Revolutionary Mathematical Optimization Algorithm},
year = {2024},
url = {https://github.com/pro-creations/sky-optimizer},
version = {1.0.0}
}
This project is licensed under the MIT License - see the LICENSE file for details.
Sky Optimizer builds upon decades of optimization research. We acknowledge the foundational work in:
๐ Unleash the power of revolutionary mathematical optimization with Sky Optimizer!
FAQs
Revolutionary Mathematical Optimization Algorithm combining cutting-edge techniques
We found that sky-optimizer demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago.ย It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
A new Node.js homepage button linking to paid support for EOL versions has sparked a heated discussion among contributors and the wider community.
Research
North Korean threat actors linked to the Contagious Interview campaign return with 35 new malicious npm packages using a stealthy multi-stage malware loader.
Research
Security News
The Socket Research Team investigates a malicious Python typosquat of a popular password library that forces Windows shutdowns when input is incorrect.