Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

sonar-space

Package Overview
Dependencies
Maintainers
4
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

sonar-space

SONAR provides a set of speech and text encoders for multilingual, multimodal semantic embedding.

  • 0.3.2
  • Source
  • PyPI
  • Socket score

Maintainers
4

SONAR

[Paper] [Demo]

We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space, with a full suite of speech and text encoders and decoders. It substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks.

Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. We also provide a single text decoder, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations.

SONAR stands for Sentence-level multimOdal and laNguage-Agnostic Representations

The full list of supported languages (along with download links) can be found here below.

SONAR Architecture:


Text results


Speech results


Installing

You can install SONAR with pip install sonar-space. Note that there is another sonar package on pip that IS NOT this project, make sure to use sonar-space in your dependencies.

SONAR depends on fairseq2 and torch/torchaudio, you will have to install the variant (cpu/cuda/...) that works for your environment manully.

Check fairseq2 variants for possible variants. Note that SONAR currently relies on the release candidate for fairseq2 0.3.0 rc1.

If fairseq2 does not provide a build for your machine, check the readme of that project to build it locally.

Usage

fairseq2 will automatically download models into your $TORCH_HOME/hub directory upon using the commands below.

Compute text sentence embeddings with SONAR:

from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
t2vec_model = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder",
                                           tokenizer="text_sonar_basic_encoder")
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
embeddings = t2vec_model.predict(sentences, source_lang="eng_Latn")
print(embeddings.shape)
# torch.Size([2, 1024])

Reconstruct text from SONAR embeddings

from sonar.inference_pipelines.text import EmbeddingToTextModelPipeline
vec2text_model = EmbeddingToTextModelPipeline(decoder="text_sonar_basic_decoder",
                                              tokenizer="text_sonar_basic_encoder")
reconstructed = vec2text_model.predict(embeddings, target_lang="eng_Latn", max_seq_len=512)
# max_seq_len is a keyword argument passed to the fairseq2 BeamSearchSeq2SeqGenerator.
print(reconstructed)
# ['My name is SONAR.', 'I can embed the sentences into vector space.']

Translate text with SONAR

from sonar.inference_pipelines.text import TextToTextModelPipeline
t2t_model = TextToTextModelPipeline(encoder="text_sonar_basic_encoder",
                                    decoder="text_sonar_basic_decoder",
                                    tokenizer="text_sonar_basic_encoder")  # tokenizer is attached to both encoder and decoder cards

sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
t2t_model.predict(sentences, source_lang="eng_Latn", target_lang="fra_Latn")
# ['Mon nom est SONAR.', "Je peux intégrer les phrases dans l'espace vectoriel."]

Compute speech sentence embeddings with SONAR

from sonar.inference_pipelines.speech import SpeechToEmbeddingModelPipeline
s2vec_model = SpeechToEmbeddingModelPipeline(encoder="sonar_speech_encoder_eng")

s2vec_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
                     "./tests/integration_tests/data/audio_files/audio_2.wav"]).shape
# torch.Size([2, 1024])
import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"

s2vec_model.predict([inp]).shape
# torch.Size([1, 1024])

Speech-to-text translation with SONAR

from sonar.inference_pipelines.speech import SpeechToTextModelPipeline

s2t_model = SpeechToTextModelPipeline(encoder="sonar_speech_encoder_eng",
                                      decoder="text_sonar_basic_decoder",
                                      tokenizer="text_sonar_basic_decoder")

import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"

# passing loaded audio files
s2t_model.predict([inp], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.']

# passing multiple wav files 
s2t_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
                   "./tests/integration_tests/data/audio_files/audio_2.wav"], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.',
# 'These couples may choose to make an adoption plan for their baby.']

Predicting sentence similarity with BLASER 2.0 models

BLASER 2.0 is a family of models for automatic evaluation of machine translation quality based on SONAR embeddings. They predict cross-lingual semantic similarity between the translation and the source (optionally, also using a reference translation).

from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
from sonar.models.blaser.loader import load_blaser_model

blaser_ref = load_blaser_model("blaser_2_0_ref").eval()
blaser_qe = load_blaser_model("blaser_2_0_qe").eval()
text_embedder = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", tokenizer="text_sonar_basic_encoder")

src_embs = text_embedder.predict(["Le chat s'assit sur le tapis."], source_lang="fra_Latn")
ref_embs = text_embedder.predict(["The cat sat on the mat."], source_lang="eng_Latn")
mt_embs = text_embedder.predict(["The cat sat down on the carpet."], source_lang="eng_Latn")

print(blaser_ref(src=src_embs, ref=ref_embs, mt=mt_embs).item())  # 4.688
print(blaser_qe(src=src_embs, mt=mt_embs).item())  # 4.708

Detailed model cards with more examples: facebook/blaser-2.0-ref, facebook/blaser-2.0-qe.

Classifying the toxicity of sentences with MuTox

MuTox, the first highly multilingual audio-based classifier (binary) and dataset with toxicity labels. The dataset consists of 20k audio utterances for English and Spanish, and 4k for the other 19 languages, and uses the multi-model and multilingual encoders from SONAR. The output of the MuTox classifier is a logit of the evaluated being "toxic", according to the definition adopted in the corresponding dataset.

from sonar.models.mutox.loader import load_mutox_model
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
import torch

if torch.cuda.is_available():
    device = torch.device("cuda:0")
    dtype = torch.float16
else:
    device = torch.device("cpu")
    dtype = torch.float32

t2vec_model = TextToEmbeddingModelPipeline(
    encoder="text_sonar_basic_encoder",
    tokenizer="text_sonar_basic_encoder",
    device=device,
)
text_column='lang_txt'
classifier = load_mutox_model(
    "sonar_mutox",
    device=device,
    dtype=dtype,
).eval()

with torch.inference_mode():
    emb = t2vec_model.predict(["De peur que le pays ne se prostitue et ne se remplisse de crimes."], source_lang='fra_Latn')
    x = classifier(emb.to(device).to(dtype)) # tensor([[-19.7812]], device='cuda:0', dtype=torch.float16)

with torch.inference_mode():
    emb = t2vec_model.predict(["She worked hard and made a significant contribution to the team."], source_lang='eng_Latn')
    x = classifier(emb.to(device).to(dtype)) # tensor([[-53.5938]], device='cuda:0', dtype=torch.float16)

with torch.inference_mode():
    emb = t2vec_model.predict(["El no tiene ni el más mínimo talento, todo lo que ha logrado ha sido gracias a sobornos y manipulaciones."], source_lang='spa_Latn')
    x = classifier(emb.to(device).to(dtype)) # tensor([[-21.4062]], device='cuda:0', dtype=torch.float16)

For a CLI way of running the MuTox pipeline, go to Seamless Communication/.../MuTox.

Demo notebooks

See more complete demo notebooks :

The SONAR text encoder & decoder supports 200 languages. SONAR speech encoders support 37 languages.

Available text encoders/decoders
modellink
encoderdownload
decoderdownload
finetuned decoderdownload
tokenizerdownload

All 200 languages from the No Language Left Behind project are supported.

Available speech encoders
lang_codelanguagelink
arbms arabicdownload
asmassamesedownload
belbelarussiandownload
benbengalidownload
bosbosniandownload
bulbulgariandownload
catcatalandownload
cesczechdownload
cmnmandarin chinesedownload
cymwelshdownload
dandanishdownload
deugermandownload
estestoniandownload
finfinnishdownload
frafrenchdownload
gujgujuratidownload
hebhebrewdownload
hinhindidownload
hrvcroatiandownload
indindonesiandownload
itaitaliandownload
jpnjapansedownload
kankannadadownload
korkoreandownload
laolaodownload
litlithaiandownload
lvsstandard latviandownload
malmalayalamdownload
marmarathidownload
mkdmacedoniandownload
mltmaltesedownload
npinepalidownload
nlddutchdownload
oryodiadownload
panpunjabidownload
peswestern persiandownload
polpolishdownload
porportuguesedownload
ronromaniandownload
rusrussiandownload
slkslovakdownload
slvsloveniandownload
sndsindhidownload
srpserbiandownload
spaspanishdownload
sweswedishdownload
swhswahilidownload
tamtamildownload
teltelugudownload
tgltagalogdownload
thathaidownload
turturkishdownload
ukrukrainiandownload
urdurdudownload
uznnorthern uzbekdownload
vievietnamesedownload
yueyuedownload

Citation Information

Please cite the paper when referencing the SONAR embedding space, encoders and decoders as:

@misc{Duquenne:2023:sonar_arxiv,
  author = {Paul-Ambroise Duquenne and Holger Schwenk and Benoit Sagot},
  title = {{SONAR:} Sentence-Level Multimodal and Language-Agnostic Representations},
  publisher = {arXiv},
  year = {2023},
  url = {https://arxiv.org/abs/2308.11466},
}

Contributing

See the CONTRIBUTING file for how to help out.

License

SONAR code is released under the MIT license (see CODE_LICENSE).

Some of SONAR models are released with the same MIT license, BUT BEWARE, some of them are released under a non commercial license (see NC_MODEL_LICENSE). Please refer to LICENSE for the details.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc