New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

spark-nlp-display

Package Overview
Dependencies
Maintainers
4
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

spark-nlp-display

Visualization package for Spark NLP

5.0
PyPI
Maintainers
4

spark-nlp-display

A library for the simple visualization of different types of Spark NLP annotations.

Supported Visualizations:

  • Dependency Parser
  • Named Entity Recognition
  • Entity Resolution
  • Relation Extraction
  • Assertion Status

Complete Tutorial

Open In Colab

https://github.com/JohnSnowLabs/spark-nlp-display/blob/main/tutorials/Spark_NLP_Display.ipynb

Requirements

  • spark-nlp
  • ipython
  • svgwrite
  • pandas
  • numpy

Installation

pip install spark-nlp-display

How to use

Databricks

For all modules, pass in the additional parameter "return_html=True" in the display function and use Databrick's function displayHTML() to render visualization as explained below:
from sparknlp_display import NerVisualizer

ner_vis = NerVisualizer()

## To set custom label colors:
ner_vis.set_label_colors({'LOC':'#800080', 'PER':'#77b5fe'}) #set label colors by specifying hex codes

pipeline_result = ner_light_pipeline.fullAnnotate(text) ##light pipeline
#pipeline_result = ner_full_pipeline.transform(df).collect()##full pipeline

vis_html = ner_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
                    label_col='entities', #specify the entity column
                    document_col='document', #specify the document column (default: 'document')
                    labels=['PER'], #only allow these labels to be displayed. (default: [] - all labels will be displayed)
                    return_html=True)

displayHTML(vis_html)

title

Jupyter

To save the visualization as html, provide the export file path: save_path='./export.html' for each visualizer.

Dependency Parser
from sparknlp_display import DependencyParserVisualizer

dependency_vis = DependencyParserVisualizer()

pipeline_result = dp_pipeline.fullAnnotate(text)
#pipeline_result = dp_full_pipeline.transform(df).collect()##full pipeline

dependency_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe.
                       pos_col = 'pos', #specify the pos column
                       dependency_col = 'dependency', #specify the dependency column
                       dependency_type_col = 'dependency_type', #specify the dependency type column
                       save_path='./export.html' # optional - to save viz as html. (default: None)
                       )

title

Named Entity Recognition
from sparknlp_display import NerVisualizer

ner_vis = NerVisualizer()

pipeline_result = ner_light_pipeline.fullAnnotate(text)
#pipeline_result = ner_full_pipeline.transform(df).collect()##full pipeline

ner_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
                    label_col='entities', #specify the entity column
                    document_col='document', #specify the document column (default: 'document')
                    labels=['PER'], #only allow these labels to be displayed. (default: [] - all labels will be displayed)
                    save_path='./export.html' # optional - to save viz as html. (default: None)
                    )

## To set custom label colors:
ner_vis.set_label_colors({'LOC':'#800080', 'PER':'#77b5fe'}) #set label colors by specifying hex codes

title

Entity Resolution
from sparknlp_display import EntityResolverVisualizer

er_vis = EntityResolverVisualizer()

pipeline_result = er_light_pipeline.fullAnnotate(text)

er_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
               label_col='entities', #specify the ner result column
               resolution_col = 'resolution',
               document_col='document', #specify the document column (default: 'document')
               save_path='./export.html' # optional - to save viz as html. (default: None)
               )

## To set custom label colors:
er_vis.set_label_colors({'TREATMENT':'#800080', 'PROBLEM':'#77b5fe'}) #set label colors by specifying hex codes

title

Relation Extraction
from sparknlp_display import RelationExtractionVisualizer

re_vis = RelationExtractionVisualizer()

pipeline_result = re_light_pipeline.fullAnnotate(text)

re_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
               relation_col = 'relations', #specify relations column
               document_col = 'document', #specify document column
               show_relations=True, #display relation names on arrows (default: True)
               save_path='./export.html' # optional - to save viz as html. (default: None)
               )

title

Assertion Status
from sparknlp_display import AssertionVisualizer

assertion_vis = AssertionVisualizer()

pipeline_result = ner_assertion_light_pipeline.fullAnnotate(text)

assertion_vis.display(pipeline_result[0], 
                      label_col = 'entities', #specify the ner result column
                      assertion_col = 'assertion', #specify assertion column
                      document_col = 'document', #specify the document column (default: 'document')
                      save_path='./export.html' # optional - to save viz as html. (default: None)
                      )
                      
## To set custom label colors:
assertion_vis.set_label_colors({'TREATMENT':'#008080', 'problem':'#800080'}) #set label colors by specifying hex codes

title

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts