
Security News
Node.js Moves Toward Stable TypeScript Support with Amaro 1.0
Amaro 1.0 lays the groundwork for stable TypeScript support in Node.js, bringing official .ts loading closer to reality.
A library for the simple visualization of different types of Spark NLP annotations.
https://github.com/JohnSnowLabs/spark-nlp-display/blob/main/tutorials/Spark_NLP_Display.ipynb
pip install spark-nlp-display
from sparknlp_display import NerVisualizer
ner_vis = NerVisualizer()
## To set custom label colors:
ner_vis.set_label_colors({'LOC':'#800080', 'PER':'#77b5fe'}) #set label colors by specifying hex codes
pipeline_result = ner_light_pipeline.fullAnnotate(text) ##light pipeline
#pipeline_result = ner_full_pipeline.transform(df).collect()##full pipeline
vis_html = ner_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
label_col='entities', #specify the entity column
document_col='document', #specify the document column (default: 'document')
labels=['PER'], #only allow these labels to be displayed. (default: [] - all labels will be displayed)
return_html=True)
displayHTML(vis_html)
To save the visualization as html, provide the export file path: save_path='./export.html'
for each visualizer.
from sparknlp_display import DependencyParserVisualizer
dependency_vis = DependencyParserVisualizer()
pipeline_result = dp_pipeline.fullAnnotate(text)
#pipeline_result = dp_full_pipeline.transform(df).collect()##full pipeline
dependency_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe.
pos_col = 'pos', #specify the pos column
dependency_col = 'dependency', #specify the dependency column
dependency_type_col = 'dependency_type', #specify the dependency type column
save_path='./export.html' # optional - to save viz as html. (default: None)
)
from sparknlp_display import NerVisualizer
ner_vis = NerVisualizer()
pipeline_result = ner_light_pipeline.fullAnnotate(text)
#pipeline_result = ner_full_pipeline.transform(df).collect()##full pipeline
ner_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
label_col='entities', #specify the entity column
document_col='document', #specify the document column (default: 'document')
labels=['PER'], #only allow these labels to be displayed. (default: [] - all labels will be displayed)
save_path='./export.html' # optional - to save viz as html. (default: None)
)
## To set custom label colors:
ner_vis.set_label_colors({'LOC':'#800080', 'PER':'#77b5fe'}) #set label colors by specifying hex codes
from sparknlp_display import EntityResolverVisualizer
er_vis = EntityResolverVisualizer()
pipeline_result = er_light_pipeline.fullAnnotate(text)
er_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
label_col='entities', #specify the ner result column
resolution_col = 'resolution',
document_col='document', #specify the document column (default: 'document')
save_path='./export.html' # optional - to save viz as html. (default: None)
)
## To set custom label colors:
er_vis.set_label_colors({'TREATMENT':'#800080', 'PROBLEM':'#77b5fe'}) #set label colors by specifying hex codes
from sparknlp_display import RelationExtractionVisualizer
re_vis = RelationExtractionVisualizer()
pipeline_result = re_light_pipeline.fullAnnotate(text)
re_vis.display(pipeline_result[0], #should be the results of a single example, not the complete dataframe
relation_col = 'relations', #specify relations column
document_col = 'document', #specify document column
show_relations=True, #display relation names on arrows (default: True)
save_path='./export.html' # optional - to save viz as html. (default: None)
)
from sparknlp_display import AssertionVisualizer
assertion_vis = AssertionVisualizer()
pipeline_result = ner_assertion_light_pipeline.fullAnnotate(text)
assertion_vis.display(pipeline_result[0],
label_col = 'entities', #specify the ner result column
assertion_col = 'assertion', #specify assertion column
document_col = 'document', #specify the document column (default: 'document')
save_path='./export.html' # optional - to save viz as html. (default: None)
)
## To set custom label colors:
assertion_vis.set_label_colors({'TREATMENT':'#008080', 'problem':'#800080'}) #set label colors by specifying hex codes
FAQs
Visualization package for Spark NLP
We found that spark-nlp-display demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 4 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Amaro 1.0 lays the groundwork for stable TypeScript support in Node.js, bringing official .ts loading closer to reality.
Research
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Product
Socket now supports pylock.toml, enabling secure, reproducible Python builds with advanced scanning and full alignment with PEP 751's new standard.