sparkql ✨
Python Spark SQL DataFrame schema management for sensible humans, with no dependencies aside from pyspark.
Don't sweat it... sparkql it ✨
Why use sparkql
sparkql
takes the pain out of working with DataFrame schemas in PySpark.
It makes schema definition more Pythonic. And it's
particularly useful you're dealing with structured data.
In plain old PySpark, you might find that you write schemas
like this:
CITY_SCHEMA = StructType()
CITY_NAME_FIELD = "name"
CITY_SCHEMA.add(StructField(CITY_NAME_FIELD, StringType(), False))
CITY_LAT_FIELD = "latitude"
CITY_SCHEMA.add(StructField(CITY_LAT_FIELD, FloatType()))
CITY_LONG_FIELD = "longitude"
CITY_SCHEMA.add(StructField(CITY_LONG_FIELD, FloatType()))
CONFERENCE_SCHEMA = StructType()
CONF_NAME_FIELD = "name"
CONFERENCE_SCHEMA.add(StructField(CONF_NAME_FIELD, StringType(), False))
CONF_CITY_FIELD = "city"
CONFERENCE_SCHEMA.add(StructField(CONF_CITY_FIELD, CITY_SCHEMA))
And then plain old PySpark makes you deal with nested fields like this:
dframe.withColumn("city_name", df[CONF_CITY_FIELD][CITY_NAME_FIELD])
Instead, with sparkql
, schemas become a lot
more literate:
class City(Struct):
name = String(nullable=False)
latitude = Float()
longitude = Float()
class Conference(Struct):
name = String(nullable=False)
city = City()
As does dealing with nested fields:
dframe.withColumn("city_name", Conference.city.name.COL)
Here's a summary of sparkql
's features.
- ORM-like class-based Spark schema definitions.
- Automated field naming: The attribute name of a field as it appears
in its
Struct
is (by default) used as its field name. This name can
be optionally overridden. - Programatically reference nested fields in your structs with the
PATH
and COL
special properties. Avoid hand-constructing strings
(or Column
s) to reference your nested fields. - Validate that a DataFrame matches a
sparkql
schema. - Reuse and build composite schemas with
inheritance
, includes
, and
implements
. - Get a human-readable Spark schema representation with
pretty_schema
. - Create an instance of a schema as a dictionary, with validation of
the input values.
Read on for documentation on these features.
Defining a schema
Each Spark atomic type has a counterpart sparkql
field:
PySpark type | sparkql field |
---|
ByteType | Byte |
IntegerType | Integer |
LongType | Long |
ShortType | Short |
DecimalType | Decimal |
DoubleType | Double |
FloatType | Float |
StringType | String |
BinaryType | Binary |
BooleanType | Boolean |
DateType | Date |
TimestampType | Timestamp |
Array
(counterpart to ArrayType
in PySpark) allows the definition
of arrays of objects. By creating a subclass of Struct
, we can
define a custom class that will be converted to a StructType
.
For
example,
given the sparkql
schema definition:
from sparkql import Struct, String, Array
class Article(Struct):
title = String(nullable=False)
tags = Array(String(), nullable=False)
comments = Array(String(nullable=False))
Then we can build the equivalent PySpark schema (a StructType
)
with:
from sparkql import schema
pyspark_struct = schema(Article)
Pretty printing the schema with the expression
sparkql.pretty_schema(pyspark_struct)
will give the following:
StructType([
StructField('title', StringType(), False),
StructField('tags',
ArrayType(StringType(), True),
False),
StructField('comments',
ArrayType(StringType(), False),
True)])
Features
Many examples of how to use sparkql
can be found in
examples
.
Automated field naming
By default, field names are inferred from the attribute name in the
struct they are declared.
For example, given the struct
class Geolocation(Struct):
latitude = Float()
longitude = Float()
the concrete name of the Geolocation.latitude
field is latitude
.
Names also be overridden by explicitly specifying the field name as an
argument to the field
class Geolocation(Struct):
latitude = Float(name="lat")
longitude = Float(name="lon")
which would mean the concrete name of the Geolocation.latitude
field
is lat
.
Field paths and nested objects
Referencing fields in nested data can be a chore. sparkql
simplifies this
with path referencing.
For example, if we have a
schema with nested objects:
class Address(Struct):
post_code = String()
city = String()
class User(Struct):
username = String(nullable=False)
address = Address()
class Comment(Struct):
message = String()
author = User(nullable=False)
class Article(Struct):
title = String(nullable=False)
author = User(nullable=False)
comments = Array(Comment())
We can use the special PATH
property to turn a path into a
Spark-understandable string:
author_city_str = Article.author.address.city.PATH
"author.address.city"
COL
is a counterpart to PATH
that returns a Spark Column
object for the path, allowing it to be used in all places where Spark
requires a column.
Function equivalents path_str
, path_col
, and name
are also available.
This table demonstrates the equivalence of the property styles and the function
styles:
Property style | Function style | Result (both styles are equivalent) |
---|
Article.author.address.city.PATH | sparkql.path_str(Article.author.address.city) | "author.address.city" |
Article.author.address.city.COL | sparkql.path_col(Article.author.address.city) | Column pointing to author.address.city |
Article.author.address.city.NAME | sparkql.name(Article.author.address.city) | "city" |
For paths that include an array, two approaches are provided:
comment_usernames_str = Article.comments.e.author.username.PATH
"comments.author.username"
comment_usernames_str = Article.comments.author.username.PATH
"comments.author.username"
Both give the same result. However, the former (e
) is more
type-oriented. The e
attribute corresponds to the array's element
field. Although this looks strange at first, it has the advantage of
being inspectable by IDEs and other tools, allowing goodness such as
IDE auto-completion, automated refactoring, and identifying errors
before runtime.
Field metadata
Field metadata can be specified with the metadata
argument to a field, which accepts a dictionary
of key-value pairs.
class Article(Struct):
title = String(nullable=False,
metadata={"description": "The title of the article", "max_length": 100})
The metadata can be accessed with the METADATA
property of the field:
Article.title.METADATA
{"description": "The title of the article", "max_length": 100}
DataFrame validation
Struct method validate_data_frame
will verify if a given DataFrame's
schema matches the Struct.
For example,
if we have our Article
struct and a DataFrame we want to ensure adheres to the Article
schema:
dframe = spark_session.createDataFrame([{"title": "abc"}])
class Article(Struct):
title = String()
body = String()
Then we can can validate with:
validation_result = Article.validate_data_frame(dframe)
validation_result.is_valid
indicates whether the DataFrame is valid
(False
in this case), and validation_result.report
is a
human-readable string describing the differences:
Struct schema...
StructType([
StructField('title', StringType(), True),
StructField('body', StringType(), True)])
DataFrame schema...
StructType([
StructField('title', StringType(), True)])
Diff of struct -> data frame...
StructType([
- StructField('title', StringType(), True)])
+ StructField('title', StringType(), True),
+ StructField('body', StringType(), True)])
For convenience,
Article.validate_data_frame(dframe).raise_on_invalid()
will raise a InvalidDataFrameError
(see sparkql.exceptions
) if the
DataFrame is not valid.
Creating an instance of a schema
sparkql
simplifies the process of creating an instance of a struct.
You might need to do this, for example, when creating test data, or
when creating an object (a dict or a row) to return from a UDF.
Use Struct.make_dict(...)
to instantiate a struct as a dictionary.
This has the advantage that the input values will be correctly
validated, and it will convert schema property names into their
underlying field names.
For
example,
given some simple Structs:
class User(Struct):
id = Integer(name="user_id", nullable=False)
username = String()
class Article(Struct):
id = Integer(name="article_id", nullable=False)
title = String()
author = User()
text = String(name="body")
Here are a few examples of creating dicts from Article
:
Article.make_dict(
id=1001,
title="The article title",
author=User.make_dict(
id=440,
username="user"
),
text="Lorem ipsum article text lorem ipsum."
)
{
"article_id": 1001,
"author": {
"user_id": 440,
"username": "user"},
"body": "Lorem ipsum article text lorem ipsum.",
"title": "The article title"
}
Article.make_dict(
id=1002
)
{
"article_id": 1002,
"author": None,
"body": None,
"title": None
}
See
this example
for an extended example of using make_dict
.
Composite schemas
It is sometimes useful to be able to re-use the fields of one struct
in another struct. sparkql
provides a few features to enable this:
- inheritance: A subclass inherits the fields of a base struct class.
- includes: Incorporate fields from another struct.
- implements: Enforce that a struct must implement the fields of
another struct.
See the following examples for a better explanation.
Using inheritance
For example, the following:
class BaseEvent(Struct):
correlation_id = String(nullable=False)
event_time = Timestamp(nullable=False)
class RegistrationEvent(BaseEvent):
user_id = String(nullable=False)
will produce the following RegistrationEvent
schema:
StructType([
StructField('correlation_id', StringType(), False),
StructField('event_time', TimestampType(), False),
StructField('user_id', StringType(), False)])
Using an includes
declaration
For example, the following:
class EventMetadata(Struct):
correlation_id = String(nullable=False)
event_time = Timestamp(nullable=False)
class RegistrationEvent(Struct):
class Meta:
includes = [EventMetadata]
user_id = String(nullable=False)
will produce the RegistrationEvent
schema:
StructType(List(
StructField('user_id', StringType(), False),
StructField('correlation_id', StringType(), False),
StructField('event_time', TimestampType(), False)))
Using an implements
declaration
implements
is similar to includes
, but does not automatically
incorporate the fields of specified structs. Instead, it is up to
the implementor to ensure that the required fields are declared in
the struct.
Failing to implement a field from an implements
struct will result in
a StructImplementationError
error.
For example:
class LogEntryMetadata(Struct):
logged_at = Timestamp(nullable=False)
class PageViewLogEntry(Struct):
class Meta:
implements = [LogEntryMetadata]
page_id = String(nullable=False)
# the above class declaration will fail with the following StructImplementationError error:
# Struct 'PageViewLogEntry' does not implement field 'logged_at' required by struct 'LogEntryMetadata'
Prettified Spark schema strings
Spark's stringified schema representation isn't very user-friendly, particularly for large schemas:
StructType([StructField('name', StringType(), False), StructField('city', StructType([StructField('name', StringType(), False), StructField('latitude', FloatType(), True), StructField('longitude', FloatType(), True)]), True)])
The function pretty_schema
will return something more useful:
StructType([
StructField('name', StringType(), False),
StructField('city',
StructType([
StructField('name', StringType(), False),
StructField('latitude', FloatType(), True),
StructField('longitude', FloatType(), True)]),
True)])
Merge two Spark StructType
types
It can be useful to build a composite schema from two StructType
s. sparkql provides a
merge_schemas
function to do this.
For example:
schema_a = StructType([
StructField("message", StringType()),
StructField("author", ArrayType(
StructType([
StructField("name", StringType())
])
))
])
schema_b = StructType([
StructField("author", ArrayType(
StructType([
StructField("address", StringType())
])
))
])
merged_schema = merge_schemas(schema_a, schema_b)
results in a merged_schema
that looks like:
StructType([
StructField('message', StringType(), True),
StructField('author',
ArrayType(StructType([
StructField('name', StringType(), True),
StructField('address', StringType(), True)]), True),
True)])
Contributing
Contributions are very welcome. Developers who'd like to contribute to
this project should refer to CONTRIBUTING.md.