stochasticclock
A module calculating the stochastic deviations in timepoints for atomic clocks.
This module is an application of the theory presented in Galleani et al. (2003), doi:10.1088/0026-1394/40/3/305.
The module's current functionality calculates stochastic deviations using the exact iterative solution to the stochastic differential equation in Galleani_exact()
$$\begin{equation*}
\mathbf{X}(t_{n+1}) =
\begin{pmatrix}
1 & \delta t \\
0 & 1
\end{pmatrix}
\mathbf{X}(t_n) +
\begin{pmatrix}
\delta t \mu_1 + \frac{1}{2} \delta t^2 \mu_2 \\
\delta t \mu_2
\end{pmatrix}
+ \mathbf{\Sigma}(t_n)
\end{equation*}$$
$$\begin{equation*}
\mathbf{\Sigma}(t_n) \sim \mathcal{N} \bigg( \mathbf{0},
\begin{bmatrix}
\sigma_1^2 \delta t + \frac{1}{3} \sigma_2^2 \delta t^3 & \frac{1}{2}\sigma_2^2 \delta t^2 \\
\frac{1}{2}\sigma_2^2 \delta t^2 & \sigma_2^2 \delta t
\end{bmatrix}
\bigg)
\end{equation*}$$
Stochastic deviations can be visualised using clock_error()
, and their distributions simulated with deviation_distribution()
.
Please consult the Jupyter notebook for a walkthrough of the package.