
Security News
MCP Community Begins Work on Official MCP Metaregistry
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
Generates GraphQL types, inputs, queries and resolvers directly from SQLAlchemy models.
🔄 Type Generation: Generate strawberry types from SQLAlchemy models
🧠 Smart Resolvers: Automatically generates single, optimized database queries for a given GraphQL request
🔍 Filtering: Rich filtering capabilities on most data types, including PostGIS geo columns
📄 Pagination: Built-in offset-based pagination
📊 Aggregation: Support for aggregation functions like count, sum, avg, min, max, and statistical functions
🔀 CRUD: Full support for Create, Read, Update, and Delete mutations with relationship handling
🪝 Hooks: Customize query behavior with query hooks: add filtering, load extra column etc.
⚡ Sync/Async: Works with both sync and async SQLAlchemy sessions
🛢 Database: Currently, only PostgreSQL is officially supported and tested (using asyncpg or psycopg3 sync/async)
[!Warning]
Please note that strawchemy is currently in a pre-release stage of development. This means that the library is still under active development and the initial API is subject to change. We encourage you to experiment with strawchemy and provide feedback, but be sure to pin and update carefully until a stable release is available.
Currently, only PostgreSQL is officially supported and tested (using asyncpg or psycopg3 sync/async)
Strawchemy is available on PyPi
pip install strawchemy
Strawchemy has the following optional dependencies:
geo
: Enable Postgis support through geoalchemy2To install these dependencies along with strawchemy:
pip install strawchemy[geo]
import strawberry
from strawchemy import Strawchemy
from sqlalchemy import ForeignKey
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column, relationship
# Initialize the strawchemy mapper
strawchemy = Strawchemy()
# Define SQLAlchemy models
class Base(DeclarativeBase):
pass
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
posts: Mapped[list["Post"]] = relationship("Post", back_populates="author")
class Post(Base):
__tablename__ = "post"
id: Mapped[int] = mapped_column(primary_key=True)
title: Mapped[str]
content: Mapped[str]
author_id: Mapped[int] = mapped_column(ForeignKey("user.id"))
author: Mapped[User] = relationship("User", back_populates="posts")
# Map models to GraphQL types
@strawchemy.type(User, include="all")
class UserType:
pass
@strawchemy.type(Post, include="all")
class PostType:
pass
# Create filter inputs
@strawchemy.filter(User, include="all")
class UserFilter:
pass
@strawchemy.filter(Post, include="all")
class PostFilter:
pass
# Create order by inputs
@strawchemy.order(User, include="all")
class UserOrderBy:
pass
@strawchemy.order(Post, include="all")
class PostOrderBy:
pass
# Define GraphQL query fields
@strawberry.type
class Query:
users: list[UserType] = strawchemy.field(filter_input=UserFilter, order_by=UserOrderBy, pagination=True)
posts: list[PostType] = strawchemy.field(filter_input=PostFilter, order_by=PostOrderBy, pagination=True)
# Create schema
schema = strawberry.Schema(query=Query)
{
# Users with pagination, filtering, and ordering
users(
offset: 0
limit: 10
filter: { name: { contains: "John" } }
orderBy: { name: ASC }
) {
id
name
posts {
id
title
content
}
}
# Posts with exact title match
posts(filter: { title: { eq: "Introduction to GraphQL" } }) {
id
title
content
author {
id
name
}
}
}
Strawchemy provides an easy way to map SQLAlchemy models to GraphQL types using the @strawchemy.type
decorator. You can include/exclude specific fields or have strawchemy map all columns/relationships of the model and it's children.
Include columns and relationships
import strawberry
from strawchemy import Strawchemy
# Assuming these models are defined as in the Quick Start example
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column, relationship
from sqlalchemy import ForeignKey
strawchemy = Strawchemy()
class Base(DeclarativeBase):
pass
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
posts: Mapped[list["Post"]] = relationship("Post", back_populates="author")
@strawchemy.type(User, include="all")
class UserType:
pass
Including/excluding specific fields
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
password: Mapped[str]
# Include specific fields
@strawchemy.type(User, include=["id", "name"])
class UserType:
pass
# Exclude specific fields
@strawchemy.type(User, exclude=["password"])
class UserType:
pass
# Include all fields
@strawchemy.type(User, include="all")
class UserType:
pass
Add a custom fields
from strawchemy import ModelInstance
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column(primary_key=True)
first_name: Mapped[str]
last_name: Mapped[str]
@strawchemy.type(User, include="all")
class UserType:
instance: ModelInstance[User]
@strawchemy.field
def full_name(self) -> str:
return f"{self.instance.first_name} {self.instance.last_name}"
See the custom resolvers for more details
By default, strawchemy generates strawberry types when visiting the model and the following relationships, but only if you have not already defined a type with the same name using the @strawchemy.type decorator, otherwise you will see an error.
To explicitly tell strawchemy to use your type, you need to define it with @strawchemy.type(override=True)
.
from strawchemy import Strawchemy
strawchemy = Strawchemy()
# Define models
class Color(Base):
__tablename__ = "color"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
fruits: Mapped[list["Fruit"]] = relationship("Fruit", back_populates="color")
class Fruit(Base):
__tablename__ = "fruit"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
color_id: Mapped[int] = mapped_column(ForeignKey("color.id"))
color: Mapped[Color] = relationship("Color", back_populates="fruits")
# Define a type with override=True
@strawchemy.type(Color, include="all", override=True)
class ColorType:
fruits: auto
name: int
# Define another type that uses the same model
@strawchemy.type(Fruit, include="all", override=True)
class FruitType:
name: int
color: auto # This will use the ColorType defined above
# Define a query that uses these types
@strawberry.type
class Query:
fruit: FruitType = strawchemy.field()
The override
parameter is useful in the following scenarios:
Without setting override=True
, you would get an error like:
Type `FruitType` cannot be auto generated because it's already declared.
You may want to set `override=True` on the existing type to use it everywhere.
This happens when Strawchemy tries to auto-generate a type for a model that already has a type defined for it.
You can also use override=True
with input types:
@strawchemy.order(Fruit, include="all", override=True)
class FruitOrderBy:
# Custom order by fields
override: bool = True
Strawchemy automatically generates resolvers for your GraphQL fields. You can use the strawchemy.field()
function to generate fields that query your database
@strawberry.type
class Query:
# Simple field that returns a list of users
users: list[UserType] = strawchemy.field()
# Field with filtering, ordering, and pagination
filtered_users: list[UserType] = strawchemy.field(filter_input=UserFilter, order_by=UserOrderBy, pagination=True)
# Field that returns a single user by ID
user: UserType = strawchemy.field()
While Strawchemy automatically generates resolvers for most use cases, you can also create custom resolvers for more complex scenarios. There are two main approaches to creating custom resolvers:
When using strawchemy.field()
as a function, strawchemy creates a resolver that delegates data fetching to the StrawchemySyncRepository
or StrawchemyAsyncRepository
classes depending on the SQLAlchemy session type.
You can create custom resolvers by using the @strawchemy.field
as a decorator and working directly with the repository:
from sqlalchemy import select, true
from strawchemy import StrawchemySyncRepository
@strawberry.type
class Query:
@strawchemy.field
def red_color(self, info: strawberry.Info) -> ColorType:
# Create a repository with a predefined filter
repo = StrawchemySyncRepository(ColorType, info, filter_statement=select(Color).where(Color.name == "Red"))
# Return a single result (will raise an exception if not found)
return repo.get_one()
@strawchemy.field
def get_color_by_name(self, info: strawberry.Info, color: str) -> ColorType | None:
# Create a repository with a custom filter statement
repo = StrawchemySyncRepository(ColorType, info, filter_statement=select(Color).where(Color.name == color))
# Return a single result or None if not found
return repo.get_one_or_none()
@strawchemy.field
def get_color_by_id(self, info: strawberry.Info, id: str) -> ColorType | None:
repo = StrawchemySyncRepository(ColorType, info)
# Return a single result or None if not found
return repo.get_by_id(id=id)
@strawchemy.field
def public_colors(self, info: strawberry.Info) -> ColorType:
repo = StrawchemySyncRepository(ColorType, info, filter_statement=select(Color).where(Color.public.is_(true())))
# Return a list of results
return repo.list()
For async resolvers, use StrawchemyAsyncRepository
which is the async variant of StrawchemySyncRepository
:
from strawchemy import StrawchemyAsyncRepository
@strawberry.type
class Query:
@strawchemy.field
async def get_color(self, info: strawberry.Info, color: str) -> ColorType | None:
repo = StrawchemyAsyncRepository(ColorType, info, filter_statement=select(Color).where(Color.name == color))
return await repo.get_one_or_none()
The repository provides several methods for fetching data:
get_one()
: Returns a single result, raises an exception if not foundget_one_or_none()
: Returns a single result or None if not foundget_by_id()
: Returns a single result filtered on primary keylist()
: Returns a list of resultsStrawchemy provides query hooks that allow you to customize query behavior. Query hooks give you fine-grained control over how SQL queries are constructed and executed.
The QueryHook
base class provides several methods that you can override to customize query behavior:
You can subclass QueryHook
and override the apply_hook
method apply changes to the statement. By default, it returns it unchanged. This method is only for filtering or ordering customizations, if you want to explicitly load columns or relationships, use the load
parameter instead.
from strawchemy import ModelInstance, QueryHook
from sqlalchemy import Select, select
from sqlalchemy.orm.util import AliasedClass
# Define a model and type
class Fruit(Base):
__tablename__ = "fruit"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
adjectives: Mapped[list[str]] = mapped_column(ARRAY(String))
# Apply the hook at the field level
@strawchemy.type(Fruit, exclude={"color"})
class FruitTypeWithDescription:
instance: ModelInstance[Fruit]
# Use QueryHook to ensure specific columns are loaded
@strawchemy.field(query_hook=QueryHook(load=[Fruit.name, Fruit.adjectives]))
def description(self) -> str:
return f"The {self.instance.name} is {', '.join(self.instance.adjectives)}"
# Create a custom query hook for filtering
class FilterFruitHook(QueryHook[Fruit]):
def apply_hook(self, statement: Select[tuple[Fruit]], alias: AliasedClass[Fruit]) -> Select[tuple[Fruit]]:
# Add a custom WHERE clause
return statement.where(alias.name == "Apple")
# Apply the hook at the type level
@strawchemy.type(Fruit, exclude={"color"}, query_hook=FilterFruitHook())
class FilteredFruitType:
pass
Important notes when implementing apply_hooks
:
alias
parameter to refer to columns of the model on which the hook is applied. Otherwise, the statement may fail.self.info
within hook methods.ModelInstance
typed attribute if you want to access the model instance values.
The instance
attribute is matched by the ModelInstance[Fruit]
type hint, so you can give it any name you want.The load
parameter specify columns and relationships that should always be loaded, even if not directly requested in the GraphQL query. This is useful for:
Examples of using the load
parameter:
# Load specific columns
@strawchemy.field(query_hook=QueryHook(load=[Fruit.name, Fruit.adjectives]))
def description(self) -> str:
return f"The {self.instance.name} is {', '.join(self.instance.adjectives)}"
# Load a relationship without specifying columns
@strawchemy.field(query_hook=QueryHook(load=[Fruit.farms]))
def pretty_farms(self) -> str:
return f"Farms are: {', '.join(farm.name for farm in self.instance.farms)}"
# Load a relationship with specific columns
@strawchemy.field(query_hook=QueryHook(load=[(Fruit.color, [Color.name, Color.created_at])]))
def pretty_color(self) -> str:
return f"Color is {self.instance.color.name}" if self.instance.color else "No color!"
# Load nested relationships
@strawchemy.field(query_hook=QueryHook(load=[(Color.fruits, [(Fruit.farms, [FruitFarm.name])])]))
def farms(self) -> str:
return f"Farms are: {', '.join(farm.name for fruit in self.instance.fruits for farm in fruit.farms)}"
Strawchemy supports offset-based pagination out of the box.
Enable pagination on fields:
from strawchemy.types import DefaultOffsetPagination
@strawberry.type
class Query:
# Enable pagination with default settings
users: list[UserType] = strawchemy.field(pagination=True)
# Customize pagination defaults
users_custom_pagination: list[UserType] = strawchemy.field(pagination=DefaultOffsetPagination(limit=20))
In your GraphQL queries, you can use the offset
and limit
parameters:
{
users(offset: 0, limit: 10) {
id
name
}
}
You can also enable pagination for nested relationships:
@strawchemy.type(User, include="all", child_pagination=True)
class UserType:
pass
Then in your GraphQL queries:
{
users {
id
name
posts(offset: 0, limit: 5) {
id
title
}
}
}
Strawchemy provides powerful filtering capabilities.
First, create a filter input type:
@strawchemy.filter(User, include="all")
class UserFilter:
pass
Then use it in your field:
@strawberry.type
class Query:
users: list[UserType] = strawchemy.field(filter_input=UserFilter)
Now you can use various filter operations in your GraphQL queries:
{
# Equality filter
users(filter: { name: { eq: "John" } }) {
id
name
}
# Comparison filters
users(filter: { age: { gt: 18, lte: 30 } }) {
id
name
age
}
# String filters
users(filter: { name: { contains: "oh", ilike: "%OHN%" } }) {
id
name
}
# Logical operators
users(filter: { _or: [{ name: { eq: "John" } }, { name: { eq: "Jane" } }] }) {
id
name
}
# Nested filters
users(filter: { posts: { title: { contains: "GraphQL" } } }) {
id
name
posts {
id
title
}
}
# Compare interval component
tasks(filter: { duration: { days: { gt: 2 } } }) {
id
name
duration
}
# Direct interval comparison
tasks(filter: { duration: { gt: "P2DT5H" } }) {
id
name
duration
}
}
Strawchemy supports a wide range of filter operations:
Data Type/Category | Filter Operations |
---|---|
Common to most types | eq , neq , isNull , in , nin |
Numeric types (Int, Float, Decimal) | gt , gte , lt , lte |
String | order filter, plus like , nlike , ilike , nilike , regexp , iregexp , nregexp , inregexp , startswith , endswith , contains , istartswith , iendswith , icontains |
JSON | contains , containedIn , hasKey , hasKeyAll , hasKeyAny |
Array | contains , containedIn , overlap |
Date | order filters on plain dates, plus year , month , day , weekDay , week , quarter , isoYear and isoWeekDay filters |
DateTime | All Date filters plus hour , minute , second |
Time | order filters on plain times, plus hour , minute and second filters |
Interval | order filters on plain intervals, plus days , hours , minutes and seconds filters |
Logical | _and , _or , _not |
Strawchemy supports spatial filtering capabilities for geometry fields using GeoJSON. To use geo filters, you need to have PostGIS installed and enabled in your PostgreSQL database.
Define models and types:
class GeoModel(Base):
__tablename__ = "geo"
id: Mapped[UUID] = mapped_column(primary_key=True, default=uuid4)
# Define geometry columns using GeoAlchemy2
point: Mapped[WKBElement | None] = mapped_column(Geometry("POINT", srid=4326), nullable=True)
polygon: Mapped[WKBElement | None] = mapped_column(Geometry("POLYGON", srid=4326), nullable=True)
@strawchemy.type(GeoModel, include="all")
class GeoType: ...
@strawchemy.filter(GeoModel, include="all")
class GeoFieldsFilter: ...
@strawberry.type
class Query:
geo: list[GeoType] = strawchemy.field(filter_input=GeoFieldsFilter)
Then you can use the following geo filter operations in your GraphQL queries:
{
# Find geometries that contain a point
geo(
filter: {
polygon: { containsGeometry: { type: "Point", coordinates: [0.5, 0.5] } }
}
) {
id
polygon
}
# Find geometries that are within a polygon
geo(
filter: {
point: {
withinGeometry: {
type: "Polygon"
coordinates: [[[0, 0], [0, 2], [2, 2], [2, 0], [0, 0]]]
}
}
}
) {
id
point
}
# Find records with null geometry
geo(filter: { point: { isNull: true } }) {
id
}
}
Strawchemy supports the following geo filter operations:
These filters work with all geometry types supported by PostGIS, including:
Point
LineString
Polygon
MultiPoint
MultiLineString
MultiPolygon
Geometry
(generic geometry type)Strawchemy automatically exposes aggregation fields for list relationships.
When you define a model with a list relationship, the corresponding GraphQL type will include an aggregation field for that relationship, named <field_name>Aggregate
.
With the folliing model definitions:
class User(Base):
__tablename__ = "user"
id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
posts: Mapped[list["Post"]] = relationship("Post", back_populates="author")
class Post(Base):
__tablename__ = "post"
id: Mapped[int] = mapped_column(primary_key=True)
title: Mapped[str]
content: Mapped[str]
author_id: Mapped[int] = mapped_column(ForeignKey("user.id"))
author: Mapped[User] = relationship("User", back_populates="posts")
And the corresponding GraphQL types:
@strawchemy.type(User, include="all")
class UserType:
pass
@strawchemy.type(Post, include="all")
class PostType:
pass
You can query aggregations on the posts
relationship:
{
users {
id
name
postsAggregate {
count
min {
title
}
max {
title
}
# Other aggregation functions are also available
}
}
}
You can also filter entities based on aggregations of their related entities.
Define types with filters:
@strawchemy.filter(User, include="all")
class UserFilter:
pass
@strawberry.type
class Query:
users: list[UserType] = strawchemy.field(filter_input=UserFilter)
For example, to find users who have more than 5 posts:
{
users(
filter: {
postsAggregate: { count: { arguments: [id], predicate: { gt: 5 } } }
}
) {
id
name
postsAggregate {
count
}
}
}
You can use various predicates for filtering:
# Users with exactly 3 posts
users(filter: {
postsAggregate: {
count: {
arguments: [id]
predicate: { eq: 3 }
}
}
})
# Users with posts containing "GraphQL" in the title
users(filter: {
postsAggregate: {
maxString: {
arguments: [title]
predicate: { contains: "GraphQL" }
}
}
})
# Users with an average post length greater than 1000 characters
users(filter: {
postsAggregate: {
avg: {
arguments: [contentLength]
predicate: { gt: 1000 }
}
}
})
You can also use the distinct
parameter to count only distinct values:
{
users(
filter: {
postsAggregate: {
count: { arguments: [category], predicate: { gt: 2 }, distinct: true }
}
}
) {
id
name
}
}
This would find users who have posts in more than 2 distinct categories.
Strawchemy supports query level aggregations.
First, create an aggregation type:
@strawchemy.aggregate(User, include="all")
class UserAggregationType:
pass
Then set up the root aggregations on the field:
@strawberry.type
class Query:
users_aggregations: UserAggregationType = strawchemy.field(root_aggregations=True)
Now you can use aggregation functions on the result of your query:
{
usersAggregations {
aggregations {
# Basic aggregations
count
sum {
age
}
avg {
age
}
min {
age
createdAt
}
max {
age
createdAt
}
# Statistical aggregations
stddev {
age
}
variance {
age
}
}
# Access the actual data
nodes {
id
name
age
}
}
}
Strawchemy provides a powerful way to create GraphQL mutations for your SQLAlchemy models. These mutations allow you to create, update, and delete data through your GraphQL API.
import strawberry
from strawchemy import Strawchemy, StrawchemySyncRepository, StrawchemyAsyncRepository
# Initialize the strawchemy mapper
strawchemy = Strawchemy()
# Define input types for mutations
@strawchemy.input(User, include=["name", "email"])
class UserCreateInput:
pass
@strawchemy.input(User, include=["id", "name", "email"])
class UserUpdateInput:
pass
@strawchemy.filter(User, include="all")
class UserFilter:
pass
# Define GraphQL mutation fields
@strawberry.type
class Mutation:
# Create mutations
create_user: UserType = strawchemy.create(UserCreateInput)
create_users: list[UserType] = strawchemy.create(UserCreateInput) # Batch creation
# Update mutations
update_user: UserType = strawchemy.update_by_ids(UserUpdateInput)
update_users: list[UserType] = strawchemy.update_by_ids(UserUpdateInput) # Batch update
update_users_filter: list[UserType] = strawchemy.update(UserUpdateInput, UserFilter) # Update with filter
# Delete mutations
delete_users: list[UserType] = strawchemy.delete() # Delete all
delete_users_filter: list[UserType] = strawchemy.delete(UserFilter) # Delete with filter
# Create schema with mutations
schema = strawberry.Schema(query=Query, mutation=Mutation)
Create mutations allow you to insert new records into your database. Strawchemy provides two types of create mutations:
# Define input type for creation
@strawchemy.input(Color, include=["name"])
class ColorCreateInput:
pass
@strawberry.type
class Mutation:
# Single entity creation
create_color: ColorType = strawchemy.create(ColorCreateInput)
# Batch creation
create_colors: list[ColorType] = strawchemy.create(ColorCreateInput)
GraphQL usage:
# Create a single color
mutation {
createColor(data: { name: "Purple" }) {
id
name
}
}
# Create multiple colors in one operation
mutation {
createColors(data: [{ name: "Teal" }, { name: "Magenta" }]) {
id
name
}
}
Strawchemy supports creating entities with relationships. You can:
@strawchemy.input(Fruit, include=["name", "adjectives"])
class FruitCreateInput:
# Define relationship inputs
color: auto # 'auto' will generate appropriate relationship inputs
GraphQL usage:
# Set an existing relationship
mutation {
createFruit(
data: {
name: "Apple"
adjectives: ["sweet", "crunchy"]
color: { set: { id: "123e4567-e89b-12d3-a456-426614174000" } }
}
) {
id
name
color {
id
name
}
}
}
# Create a new related entity
mutation {
createFruit(
data: {
name: "Banana"
adjectives: ["yellow", "soft"]
color: { create: { name: "Yellow" } }
}
) {
id
name
color {
id
name
}
}
}
# Set relationship to null
mutation {
createFruit(
data: {
name: "Strawberry"
adjectives: ["red", "sweet"]
color: { set: null }
}
) {
id
name
color {
id
}
}
}
@strawchemy.input(Color, include=["name"])
class ColorCreateInput:
# Define to-many relationship inputs
fruits: auto # 'auto' will generate appropriate relationship inputs
GraphQL usage:
# Set existing to-many relationships
mutation {
createColor(
data: {
name: "Red"
fruits: { set: [{ id: "123e4567-e89b-12d3-a456-426614174000" }] }
}
) {
id
name
fruits {
id
name
}
}
}
# Add to existing to-many relationships
mutation {
createColor(
data: {
name: "Green"
fruits: { add: [{ id: "123e4567-e89b-12d3-a456-426614174000" }] }
}
) {
id
name
fruits {
id
name
}
}
}
# Create new related entities
mutation {
createColor(
data: {
name: "Blue"
fruits: {
create: [
{ name: "Blueberry", adjectives: ["small", "blue"] }
{ name: "Plum", adjectives: ["juicy", "purple"] }
]
}
}
) {
id
name
fruits {
id
name
}
}
}
You can create deeply nested relationships:
mutation {
createColor(
data: {
name: "White"
fruits: {
create: [
{
name: "Grape"
adjectives: ["tangy", "juicy"]
farms: { create: [{ name: "Bio farm" }] }
}
]
}
}
) {
name
fruits {
name
farms {
name
}
}
}
}
Update mutations allow you to modify existing records. Strawchemy provides several types of update mutations:
# Define input type for updates
@strawchemy.input(Color, include=["id", "name"])
class ColorUpdateInput:
pass
@strawchemy.filter(Color, include="all")
class ColorFilter:
pass
@strawberry.type
class Mutation:
# Update by ID
update_color: ColorType = strawchemy.update_by_ids(ColorUpdateInput)
# Batch update by IDs
update_colors: list[ColorType] = strawchemy.update_by_ids(ColorUpdateInput)
# Update with filter
update_colors_filter: list[ColorType] = strawchemy.update(
ColorUpdateInput, ColorFilter
)
GraphQL usage:
# Update by ID
mutation {
updateColor(
data: { id: "123e4567-e89b-12d3-a456-426614174000", name: "Crimson" }
) {
id
name
}
}
# Batch update by IDs
mutation {
updateColors(
data: [
{ id: "123e4567-e89b-12d3-a456-426614174000", name: "Crimson" }
{ id: "223e4567-e89b-12d3-a456-426614174000", name: "Navy" }
]
) {
id
name
}
}
# Update with filter
mutation {
updateColorsFilter(
data: { name: "Bright Red" }
filter: { name: { eq: "Red" } }
) {
id
name
}
}
Similar to create mutations, update mutations support modifying relationships:
@strawchemy.input(Fruit, include=["id", "name"])
class FruitUpdateInput:
# Define relationship inputs
color: auto
GraphQL usage:
# Set an existing relationship
mutation {
updateFruit(
data: {
id: "123e4567-e89b-12d3-a456-426614174000"
name: "Red Apple"
color: { set: { id: "223e4567-e89b-12d3-a456-426614174000" } }
}
) {
id
name
color {
id
name
}
}
}
# Create a new related entity
mutation {
updateFruit(
data: {
id: "123e4567-e89b-12d3-a456-426614174000"
name: "Green Apple"
color: { create: { name: "Green" } }
}
) {
id
name
color {
id
name
}
}
}
# Set relationship to null
mutation {
updateFruit(
data: {
id: "123e4567-e89b-12d3-a456-426614174000"
name: "Plain Apple"
color: { set: null }
}
) {
id
name
color {
id
}
}
}
@strawchemy.input(Color, include=["id", "name"])
class ColorUpdateInput:
# Define to-many relationship inputs
fruits: auto
GraphQL usage:
# Set (replace) to-many relationships
mutation {
updateColor(
data: {
id: "123e4567-e89b-12d3-a456-426614174000"
name: "Red"
fruits: { set: [{ id: "223e4567-e89b-12d3-a456-426614174000" }] }
}
) {
id
name
fruits {
id
name
}
}
}
# Add to existing to-many relationships
mutation {
updateColor(
data: {
id: "123e4567-e89b-12d3-a456-426614174000"
name: "Red"
fruits: { add: [{ id: "223e4567-e89b-12d3-a456-426614174000" }] }
}
) {
id
name
fruits {
id
name
}
}
}
# Remove from to-many relationships
mutation {
updateColor(
data: {
id: "123e4567-e89b-12d3-a456-426614174000"
name: "Red"
fruits: { remove: [{ id: "223e4567-e89b-12d3-a456-426614174000" }] }
}
) {
id
name
fruits {
id
name
}
}
}
# Create new related entities
mutation {
updateColor(
data: {
id: "123e4567-e89b-12d3-a456-426614174000"
name: "Red"
fruits: {
create: [
{ name: "Cherry", adjectives: ["small", "red"] }
{ name: "Strawberry", adjectives: ["sweet", "red"] }
]
}
}
) {
id
name
fruits {
id
name
}
}
}
You can combine add
and create
operations in a single update:
mutation {
updateColor(
data: {
id: "123e4567-e89b-12d3-a456-426614174000"
name: "Red"
fruits: {
add: [{ id: "223e4567-e89b-12d3-a456-426614174000" }]
create: [{ name: "Raspberry", adjectives: ["tart", "red"] }]
}
}
) {
id
name
fruits {
id
name
}
}
}
Note: You cannot use set
with add
, remove
, or create
in the same operation for to-many relationships.
Delete mutations allow you to remove records from your database. Strawchemy provides two types of delete mutations:
@strawchemy.filter(User, include="all")
class UserFilter:
pass
@strawberry.type
class Mutation:
# Delete all users
delete_users: list[UserType] = strawchemy.delete()
# Delete users that match a filter
delete_users_filter: list[UserType] = strawchemy.delete(UserFilter)
GraphQL usage:
# Delete all users
mutation {
deleteUsers {
id
name
}
}
# Delete users that match a filter
mutation {
deleteUsersFilter(filter: { name: { eq: "Alice" } }) {
id
name
}
}
The returned data contains the records that were deleted.
Strawchemy supports input validation using Pydantic models. You can define validation schemas and apply them to mutations to ensure data meets specific requirements before being processed.
Create Pydantic models for the input type where you want the validation, and set the validation
parameter on strawchemy.field
:
from models import User, Group
from typing import Annotated
from pydantic import AfterValidator
from strawchemy import InputValidationError, ValidationErrorType
def _check_lower_case(value: str) -> str:
if not value.islower():
raise ValueError("Name must be lower cased")
return value
@strawchemy.pydantic.create(Group, include="all")
class GroupCreateValidation:
name: Annotated[str, AfterValidator(_check_lower_case)]
@strawchemy.pydantic.create(User, include="all")
class UserCreateValidation:
name: Annotated[str, AfterValidator(_check_lower_case)]
group: GroupCreateValidation | None = strawberry.UNSET
@strawberry.type
class Mutation:
create_user: UserType | ValidationErrorType = strawchemy.create(UserCreate, validation=UserCreateValidation)
To get the validation errors exposed in the schema, you need to add
ValidationErrorType
in the field union type
When validation fails, the query will returns a ValidationErrorType
with detailed error information from pydantic validation:
mutation {
createUser(data: { name: "Bob" }) {
__typename
... on UserType {
name
}
... on ValidationErrorType {
id
errors {
id
loc
message
type
}
}
}
}
{
"data": {
"createUser": {
"__typename": "ValidationErrorType",
"id": "ERROR",
"errors": [
{
"id": "ERROR",
"loc": ["name"],
"message": "Value error, Name must be lower cased",
"type": "value_error"
}
]
}
}
}
Validation also works with nested relationships:
mutation {
createUser(
data: {
name: "bob"
group: {
create: {
name: "Group" # This will be validated
tag: { set: { id: "..." } }
}
}
}
) {
__typename
... on ValidationErrorType {
errors {
loc
message
}
}
}
}
Strawchemy supports both synchronous and asynchronous operations. You can use either StrawchemySyncRepository
or StrawchemyAsyncRepository
depending on your needs:
from strawchemy import StrawchemySyncRepository, StrawchemyAsyncRepository
# Synchronous resolver
@strawchemy.field
def get_color(self, info: strawberry.Info, color: str) -> ColorType | None:
repo = StrawchemySyncRepository(ColorType, info, filter_statement=select(Color).where(Color.name == color))
return repo.get_one_or_none()
# Asynchronous resolver
@strawchemy.field
async def get_color(self, info: strawberry.Info, color: str) -> ColorType | None:
repo = StrawchemyAsyncRepository(ColorType, info, filter_statement=select(Color).where(Color.name == color))
return await repo.get_one_or_none()
# Synchronous mutation
@strawberry.type
class Mutation:
create_user: UserType = strawchemy.create(
UserCreateInput,
repository_type=StrawchemySyncRepository
)
# Asynchronous mutation
@strawberry.type
class AsyncMutation:
create_user: UserType = strawchemy.create(
UserCreateInput,
repository_type=StrawchemyAsyncRepository
)
By default, Strawchemy uses the StrawchemySyncRepository as its repository type. You can override this behavior by specifying a different repository using the repository_type
configuration option.
Strawchemy can be configured when initializing the mapper.
Option | Type | Default | Description |
---|---|---|---|
session_getter | Callable[[Info], Session] | default_session_getter | Function to retrieve SQLAlchemy session from strawberry Info object. By default, it retrieves the session from info.context.session . |
auto_snake_case | bool | True | Automatically convert snake cased names to camel case in GraphQL schema. |
repository_type | type[Repository] | StrawchemySyncRepository | StrawchemySyncRepository | Repository class to use for auto resolvers. |
filter_overrides | OrderedDict[tuple[type, ...], type[SQLAlchemyFilterBase]] | None | Override default filters with custom filters. This allows you to provide custom filter implementations for specific column types. |
execution_options | dict[str, Any] | None | SQLAlchemy execution options for repository operations. These options are passed to the SQLAlchemy execution_options() method. |
pagination_default_limit | int | 100 | Default pagination limit when pagination=True . |
pagination | bool | False | Enable/disable pagination on list resolvers by default. |
default_id_field_name | str | "id" | Name for primary key fields arguments on primary key resolvers. |
dialect | Literal["postgresql"] | "postgresql" | Database dialect to use. Currently, only PostgreSQL is supported. |
from strawchemy import Strawchemy
# Custom session getter function
def get_session_from_context(info):
return info.context.db_session
# Initialize with custom configuration
strawchemy = Strawchemy(
session_getter=get_session_from_context,
auto_snake_case=True,
pagination=True,
pagination_default_limit=50,
default_id_field_name="pk",
)
Contributions are welcome! Please see CONTRIBUTING.md for details on how to contribute to this project.
This project is licensed under the terms of the license included in the LICENCE file.
FAQs
Generate GraphQL API from SQLAlchemy models
We found that strawchemy demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
Research
Security News
Socket uncovers an npm Trojan stealing crypto wallets and BullX credentials via obfuscated code and Telegram exfiltration.
Research
Security News
Malicious npm packages posing as developer tools target macOS Cursor IDE users, stealing credentials and modifying files to gain persistent backdoor access.