
Product
Introducing Socket MCP for Claude Desktop
Add secure dependency scanning to Claude Desktop with Socket MCP, a one-click extension that keeps your coding conversations safe from malicious packages.
A Python package that converts table images into HTML format using Object Detection model and OCR.
pip install table2html
from table2html import Table2HTML
table_config = {
"model_path": r"table2html\models\det_table_v1.pt",
"confidence_threshold": 0.25,
"iou_threshold": 0.7,
}
row_config = {
"model_path": r"table2html\models\det_row_v0.pt",
"confidence_threshold": 0.25,
"iou_threshold": 0.7,
"task": "detect",
}
column_config = {
"model_path": r"table2html\models\det_col_v0.pt",
"confidence_threshold": 0.25,
"iou_threshold": 0.7,
"task": "detect",
}
table2html = Table2HTML(table_config, row_config, column_config)
image = cv2.imread(r"table2html\images\sample.jpg")
detection_data = table2html.TableDetect(image)
# Output: [{"table_bbox": Tuple[int]}]
# Visualize table detection (first table)
from table2html.source import visualize_boxes
cv2.imwrite(
"table_detection.jpg",
visualize_boxes(
image,
[detection_data[0]["table_bbox"]],
color=(0, 0, 255),
thickness=1
)
)
Table detection result:
data = table2html.StructureDetect(image)
# Output: {
# "cells": List[Dict],
# "num_rows": int,
# "num_cols": int,
# "html": str
# }
# Visualize structure detection
from table2html.source import visualize_boxes
cv2.imwrite(
"structure_detection.jpg",
visualize_boxes(
image,
[cell['box'] for cell in data['cells']],
color=(0, 255, 0),
thickness=1
)
)
# Write HTML output
with open('table.html', 'w') as f:
f.write(data["html"])
Structure detection result:
HTML output: extracted html.
Note: The cell coordinates are relative to the cropped table image.
table_crop_padding = 15
detection_data = table2html(image, table_crop_padding)
# Output: [{
# "table_bbox": Tuple[int],
# "cells": List[Dict],
# "num_rows": int,
# "num_cols": int,
# "html": str
# }]
for i, data in enumerate(detection_data):
table_image = crop_image(image, data["table_bbox"], table_crop_padding)
cv2.imwrite(
"table_detection.jpg",
visualize_boxes(
image,
[data["table_bbox"]],
color=(0, 0, 255),
thickness=1
)
)
cv2.imwrite(
"structure_detection.jpg",
visualize_boxes(
table_image,
[cell['box'] for cell in data['cells']],
color=(0, 255, 0),
thickness=1
)
)
with open(f"table_{i}.html", "w") as f:
f.write(data["html"])
image
: numpy.ndarray (OpenCV/cv2 image format)A list of extracted tables in structured:
table_bbox
: Tuple[int] - Bounding box coordinates (x1, y1, x2, y2) of the tablecells
: List[Dict] - List of cell dictionaries, where each dictionary contains:
row
: int - Row indexcolumn
: int - Column indexbox
: Tuple[int] - Bounding box coordinates (x1, y1, x2, y2)text
: str - Cell text contentnum_rows
: int - Number of rows in the tablenum_cols
: int - Number of columns in the tablehtml
: str - HTML representation of the tableThis project is licensed under the Apache License 2.0. See the LICENSE file for details.
FAQs
Detect and convert table image to html table
We found that table2html demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Product
Add secure dependency scanning to Claude Desktop with Socket MCP, a one-click extension that keeps your coding conversations safe from malicious packages.
Product
Socket now supports Scala and Kotlin, bringing AI-powered threat detection to JVM projects with easy manifest generation and fast, accurate scans.
Application Security
/Security News
Socket CEO Feross Aboukhadijeh and a16z partner Joel de la Garza discuss vibe coding, AI-driven software development, and how the rise of LLMs, despite their risks, still points toward a more secure and innovative future.