Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

text-prettifier

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

text-prettifier

A Python library for cleaning and preprocessing text data by removing,emojies,internet words, special characters, digits, HTML tags, URLs, and stopwords.

  • 1.1.4
  • PyPI
  • Socket score

Maintainers
1

TextPrettifier

TextPrettifier is a Python library for cleaning text data by removing HTML tags, URLs, numbers, special characters, contractions, and stopwords.

TextPrettifier Key Features

1. Removing Emojis

The remove_emojis method removes emojis from the text.

2. Removing Internet Words

The remove_internet_words method removes internet-specific words from the text.

3. Removing HTML Tags

The remove_html_tags method removes HTML tags from the text.

4. Removing URLs

The remove_urls method removes URLs from the text.

5. Removing Numbers

The remove_numbers method removes numbers from the text.

6. Removing Special Characters

The remove_special_chars method removes special characters from the text.

7. Expanding Contractions

The remove_contractions method expands contractions in the text.

8. Removing Stopwords

The remove_stopwords method removes stopwords from the text.

Additional Functionality

  • If is_lower and is_token are both True, the text is returned in lowercase and as a list of tokens.
  • If only is_lower is True, the text is returned in lowercase.
  • If only is_token is True, the text is returned as a list of tokens.
  • If neither is_lower nor is_token is True, the text is returned as is.

Installation

You can install TextPrettifier using pip:

pip install text-prettifier
from text_prettifier import TextPrettifier

Initialize TextPrettifier

text_prettifier = TextPrettifier()

Example: Remove Emojis
html_text = "Hi,Pythonogist! I ❤️ Python."
cleaned_html = text_prettifier.remove_emojis(html_text)
print(cleaned_html)

Output Hi,Pythonogist! I Python.

Example: Remove HTML tags
html_text = "<p>Hello, <b>world</b>!</p>"
cleaned_html = text_prettifier.remove_html_tags(html_text)
print(cleaned_html)

Output Hello,world!

Example: Remove URLs
url_text = "Visit our website at https://example.com"
cleaned_urls = text_prettifier.remove_urls(url_text)
print(cleaned_urls)

Output Visit our webiste at

Example: Remove numbers
number_text = "There are 123 apples"
cleaned_numbers = text_prettifier.remove_numbers(number_text)
print(cleaned_numbers)

Output There are apples

Example: Remove special characters
special_text = "Hello, @world!"
cleaned_special = text_prettifier.remove_special_chars(special_text)
print(cleaned_special)

Output Hello world

Example: Remove contractions
contraction_text = "I can't do it"
cleaned_contractions = text_prettifier.remove_contractions(contraction_text)
print(cleaned_contractions)

Output I cannot do it

Example: Remove stopwords
stopwords_text = "This is a test"
cleaned_stopwords = text_prettifier.remove_stopwords(stopwords_text)
print(cleaned_stopwords)

Output This test

Example: Apply all cleaning methods
all_text = "<p>Hello, @world!</p> There are 123 apples. I can't do it. This is a test."
all_cleaned = text_prettifier.sigma_cleaner(all_text)
print(all_cleaned)

Output Hello world 123 apples cannot test

If you are interested to tokenized and lower the cleaned text write the code

all_text = "<p>Hello, @world!</p> There are 123 apples. I can't do it. This is a test."
all_cleaned = text_prettifier.sigma_cleaner(all_text,is_token=True,is_lower=True)
print(all_cleaned)

Output ['Hello','world', '123','apples', 'cannot','test']

Note: I didn't include remove_numbers in sigma_cleaner because sometimes numbers carry useful information in term of NLP. If you want to remove number you can apply this method seperately on output of sigma_cleaner.

Contact Information

Feel free to reach out to me on social media:

GitHub LinkedIn Twitter Facebook

License

This project is licensed under the MIT License - see the LICENSE file for details.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc