Tikara
🚀 Overview
Tikara is a modern, type-hinted Python wrapper for Apache Tika, supporting over 1600 file formats for content extraction, metadata analysis, and language detection. It provides direct JNI integration through JPype for optimal performance.
from tikara import Tika
tika = Tika()
content, metadata = tika.parse("document.pdf")
⚡️ Key Features
- Modern Python 3.12+ with complete type hints
- Direct JVM integration via JPype (no HTTP server required)
- Streaming support for large files
- Recursive document unpacking
- Language detection
- MIME type detection
- Custom parser and detector support
- Comprehensive metadata extraction
- Ships with embedded Tika JAR: works in air-gapped networks. No need to manage libraries.
- Opinionated Pydantic wrapper over Tika's metadata model, with access to the raw metadata.
📦 Supported Formats
🌈 1682 supported media types and counting!
🛠️ Installation
pip install tikara
System Dependencies
Required Dependencies
- Python 3.12+
- Java Development Kit 11+ (OpenJDK recommended)
Optional Dependencies
Image and PDF OCR Enhancements (recommended)
-
Tesseract OCR (strongly recommended if you process images) (Reference ⇗)
apt-get install tesseract-ocr
Additional language packs for Tesseract (optional):
apt-get install tesseract-ocr-deu tesseract-ocr-fra tesseract-ocr-ita tesseract-ocr-spa
-
ImageMagick for advanced image processing (Reference ⇗)
apt-get install imagemagick
Multimedia Enhancements (recommended)
Enhanced PDF Support (recommended)
Enhanced PDF support with PDFBox Reference ⇗
Metadata Enhancements (recommended)
Geospatial Enhancements
Additional Font Support (recommended)
For more OS dependency information including MSCore fonts setup and additional configuration, see the official Apache Tika Dockerfile.
📖 Usage
Example Jupyter Notebooks 📔
from tikara import Tika
from pathlib import Path
tika = Tika()
content, metadata = tika.parse("document.pdf")
stream, metadata = tika.parse(
"large.pdf",
output_stream=True,
output_format="txt"
)
output_path, metadata = tika.parse(
"input.docx",
output_file=Path("output.txt"),
output_format="txt"
)
Language Detection
from tikara import Tika
tika = Tika()
result = tika.detect_language("El rápido zorro marrón salta sobre el perro perezoso")
print(f"Language: {result.language}, Confidence: {result.confidence}")
MIME Type Detection
from tikara import Tika
tika = Tika()
mime_type = tika.detect_mime_type("unknown_file")
print(f"Detected type: {mime_type}")
Recursive Document Unpacking
from tikara import Tika
from pathlib import Path
tika = Tika()
results = tika.unpack(
"container.docx",
output_dir=Path("extracted"),
max_depth=3
)
for item in results:
print(f"Extracted {item.metadata['Content-Type']} to {item.file_path}")
🔧 Development
Environment Setup
-
Ensure that you have the system dependencies installed
-
Install uv:
pip install uv
-
Install python dependencies and create the Virtual Environment: uv sync
Common Tasks
make ruff
make test
make docs
make stubs
make prepush
🤔 When to Use Tikara
Ideal Use Cases
- Python applications needing document processing
- Microservices and containerized environments
- Data processing pipelines (Ray, Dask, Prefect)
- Applications requiring direct Tika integration without HTTP overhead
Advanced Usage
For detailed documentation on:
- Custom parser implementation
- Custom detector creation
- MIME type handling
See the Example Jupyter Notebooks 📔
🎯 Inspiration
Tikara builds on the shoulders of giants:
- Apache Tika - The powerful content detection and extraction toolkit
- tika-python - The original Python Tika wrapper using HTTP that inspired this project
- JPype - The bridge between Python and Java
Considerations
- Process isolation: Tika crashes will affect the host application
- Memory management: Large documents require careful handling
- JVM startup: Initial overhead for first operation
- Custom implementations: Parser/detector development requires Java interface knowledge
📊 Performance Considerations
Memory Management
- Use streaming for large files
- Monitor JVM heap usage
- Consider process isolation for critical applications
Optimization Tips
- Reuse Tika instances
- Use appropriate output formats
- Implement custom parsers for specific needs
- Configure JVM parameters for your use case
🔐 Security Considerations
- Input validation
- Resource limits
- Secure file handling
- Access control for extracted content
- Careful handling of custom parsers
🤝 Contributing
Contributions welcome! The project uses Make for development tasks:
make prepush
For developing custom parsers/detectors, Java stubs can be generated:
make stubs
Note: Generated stubs are git-ignored but provide IDE support and type hints when implementing custom parsers/detectors.
Common Problems
- Verify Java installation and
JAVA_HOME
environment variable - Ensure Tesseract and required language packs are installed
- Check file permissions and paths
- Monitor memory usage when processing large files
- Use streaming output for large documents
📚 Reference
See API Documentation for complete details.
📄 License
Apache License 2.0 - See LICENSE for details.