
Security News
/Research
npm Phishing Email Targets Developers with Typosquatted Domain
A phishing attack targeted developers using a typosquatted npm domain (npnjs.com) to steal credentials via fake login pages - watch out for similar scams.
一个基于 SQLAlchemy 2.0 的高可复用数据库工具库,提供完整的 CRUD 操作、批量数据处理和高级数据库功能。
pip install tk-db-utils
pip install tk-db-utils
本项目采用分离式配置管理,将敏感信息和引擎参数分别存储:
.env
)创建 .env
文件并配置数据库连接的敏感信息:
# 数据库敏感信息配置
DB_HOST=localhost
DB_PORT=3306
DB_USERNAME=your_username
DB_PASSWORD=your_password
db_config.toml
)创建 db_config.toml
文件并配置数据库引擎参数:
[database]
database = "your_database_name"
driver = "pymysql"
dialect = "mysql"
charset = "utf8mb4"
collation = "utf8mb4_general_ci"
[engine]
echo = false
pool_size = 5
max_overflow = 10
pool_timeout = 30
pool_recycle = 3600
pool_pre_ping = true
💡 提示: 可以复制
.env.example
和db_config.example.toml
文件作为模板开始配置。📖 详细配置指南: 查看 CONFIG_GUIDE.md 了解完整的配置说明。
from tk_db_utils import (
configure_database,
init_db,
set_logger_level,
SqlAlChemyBase,
DbOrmBaseMixedIn,
BaseCurd
)
from sqlalchemy import Column, Integer, String, DateTime
from datetime import datetime
# 配置日志级别
set_logger_level('INFO')
# 配置数据库连接
configure_database(
host="localhost",
port=3306,
username="your_username",
password="your_password",
database="your_database",
driver="mysql",
dialect="mysql+pymysql",
# 引擎参数
echo=True,
pool_size=5,
max_overflow=10
)
# 初始化数据库
init_db()
class User(SqlAlChemyBase, DbOrmBaseMixedIn):
"""用户表模型"""
__tablename__ = 'users'
id = Column(Integer, primary_key=True, autoincrement=True)
username = Column(String(50), unique=True, nullable=False)
email = Column(String(100), unique=True, nullable=False)
created_at = Column(DateTime, default=datetime.now)
# 创建 CRUD 实例
crud = BaseCurd()
# 插入单条记录
user_data = {"username": "john", "email": "john@example.com"}
user_id = crud.insert_one(User, user_data)
# 批量插入
users_data = [
{"username": "alice", "email": "alice@example.com"},
{"username": "bob", "email": "bob@example.com"},
]
inserted_count = crud.bulk_insert(User, users_data, chunk_size=1000)
# 查询所有记录
all_users = crud.select_all(User, limit=10, offset=0)
# 根据ID查询
user = crud.select_by_id(User, 1)
# 根据条件查询
users = crud.select_by_conditions(User, {"username": "alice"})
# 更新记录
updated_count = crud.update_by_id(User, 1, {"email": "new@example.com"})
# 删除记录
deleted_count = crud.delete_by_id(User, 1)
# 统计记录数
total_count = crud.count(User)
from tk_db_utils import (
SchemaValidator,
validate_schema_consistency,
SchemaValidationError
)
# 方法1: 使用便捷函数进行验证
with get_session() as session:
try:
is_valid = validate_schema_consistency(
model=User,
engine=get_engine(),
session=session,
strict_mode=False, # 非严格模式
halt_on_error=True # 发现错误时暂停等待用户确认
)
if is_valid:
print("✅ 模式验证通过")
else:
print("❌ 模式验证失败")
except SchemaValidationError as e:
print(f"模式验证错误: {e}")
# 方法2: 使用 SchemaValidator 类进行详细验证
with get_session() as session:
validator = SchemaValidator(get_engine(), session)
result = validator.validate_model_schema(
model=User,
strict_mode=False
)
if not result['valid']:
print("发现的问题:")
for error in result['errors']:
print(f" - {error}")
# 批量插入,忽略重复数据
duplicate_users = [
{"username": "alice", "email": "alice@example.com"}, # 可能重复
{"username": "david", "email": "david@example.com"}, # 新数据
]
# 使用 INSERT IGNORE,重复数据会被忽略
inserted_count = crud.bulk_insert_ignore(User, duplicate_users, chunk_size=1000)
print(f"实际插入了 {inserted_count} 条记录")
# 批量替换数据
replace_users = [
{"id": 1, "username": "john_updated", "email": "john.new@example.com"},
{"id": 100, "username": "new_user", "email": "new@example.com"}, # 新记录
]
# 使用 REPLACE INTO,存在则更新,不存在则插入
processed_count = crud.bulk_replace_into(User, replace_users, chunk_size=1000)
print(f"处理了 {processed_count} 条记录")
from tk_db_utils import get_session
# 使用上下文管理器
with get_session() as session:
# 在会话中进行复杂查询
users = session.query(User).filter(User.username.like('%admin%')).all()
# 创建新记录
new_user = User(username="admin", email="admin@example.com")
session.add(new_user)
# 会话结束时自动提交
# 执行原生 SQL
result = crud.execute_raw_sql(
"SELECT COUNT(*) as total FROM users WHERE created_at > :date",
params={"date": "2024-01-01"}
)
configure_database(
host="localhost",
port=3306,
username="root",
password="password",
database="mydb",
driver="mysql",
dialect="mysql+pymysql"
)
configure_database(
host="localhost",
port=5432,
username="postgres",
password="password",
database="mydb",
driver="postgresql",
dialect="postgresql+psycopg2"
)
configure_database(
host="",
port=0,
username="",
password="",
database="mydb.db",
driver="sqlite",
dialect="sqlite"
)
你也可以通过环境变量来配置数据库连接:
# 数据库连接配置
export DB_HOST=localhost
export DB_PORT=3306
export DB_USERNAME=root
export DB_PASSWORD=password
export DB_DATABASE=mydb
export DB_DRIVER=mysql
export DB_DIALECT=mysql+pymysql
# 引擎参数配置
export DB_ECHO=true
export DB_POOL_SIZE=5
export DB_MAX_OVERFLOW=10
export DB_POOL_TIMEOUT=30
export DB_POOL_RECYCLE=3600
from tk_db_tool import set_logger_level, set_message_handler, set_message_config
import logging
# 设置日志级别
set_logger_level('DEBUG')
# 设置自定义日志处理器
handler = logging.FileHandler('app.log')
set_message_handler(handler)
# 设置日志配置
logger = logging.getLogger('my_app')
set_message_config(logger)
# 对于大量数据,建议使用适当的批量大小
# 一般建议 1000-5000 条记录为一批
# 小数据量
crud.bulk_insert(User, small_data, chunk_size=1000)
# 大数据量
crud.bulk_insert(User, large_data, chunk_size=3000)
# 超大数据量
crud.bulk_insert(User, huge_data, chunk_size=5000)
configure_database(
# ... 其他配置
pool_size=10, # 连接池大小
max_overflow=20, # 最大溢出连接数
pool_timeout=30, # 获取连接超时时间
pool_recycle=3600, # 连接回收时间
)
try:
crud.bulk_insert(User, invalid_data)
except ValueError as e:
print(f"数据验证错误: {e}")
except RuntimeError as e:
print(f"数据库操作错误: {e}")
except Exception as e:
print(f"未知错误: {e}")
如果你正在使用旧版本的 bulk_insert_ignore_in_chunks
方法:
# 旧方法(仍然支持,但会显示警告)
crud.bulk_insert_ignore_in_chunks(User, data, chunk_size=1000)
# 新方法(推荐)
crud.bulk_insert_ignore(User, data, chunk_size=1000)
查看 example.py
文件获取完整的使用示例,包括:
MIT License
欢迎提交 Issue 和 Pull Request!
FAQs
一个基于 SQLAlchemy 2.0 的高可复用数据库工具库,提供完整的 CRUD 操作、批量数据处理和高级数据库功能。
We found that tk-db-utils demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
/Research
A phishing attack targeted developers using a typosquatted npm domain (npnjs.com) to steal credentials via fake login pages - watch out for similar scams.
Security News
Knip hits 500 releases with v5.62.0, refining TypeScript config detection and updating plugins as monthly npm downloads approach 12M.
Security News
The EU Cyber Resilience Act is prompting compliance requests that open source maintainers may not be obligated or equipped to handle.