Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
This package consists of a small extension library of highly optimized graph cluster algorithms for the use in PyTorch. The package consists of the following clustering algorithms:
All included operations work on varying data types and are implemented both for CPU and GPU.
Update: You can now install pytorch-cluster
via Anaconda for all major OS/PyTorch/CUDA combinations 🤗
Given that you have pytorch >= 1.8.0
installed, simply run
conda install pytorch-cluster -c pyg
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see here.
To install the binaries for PyTorch 2.1.0, simply run
pip install torch-cluster -f https://data.pyg.org/whl/torch-2.1.0+${CUDA}.html
where ${CUDA}
should be replaced by either cpu
, cu118
, or cu121
depending on your PyTorch installation.
cpu | cu118 | cu121 | |
---|---|---|---|
Linux | ✅ | ✅ | ✅ |
Windows | ✅ | ✅ | ✅ |
macOS | ✅ |
To install the binaries for PyTorch 2.0.0, simply run
pip install torch-cluster -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
where ${CUDA}
should be replaced by either cpu
, cu117
, or cu118
depending on your PyTorch installation.
cpu | cu117 | cu118 | |
---|---|---|---|
Linux | ✅ | ✅ | ✅ |
Windows | ✅ | ✅ | ✅ |
macOS | ✅ |
Note: Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1 and PyTorch 1.13.0/1.13.1 (following the same procedure).
For older versions, you need to explicitly specify the latest supported version number or install via pip install --no-index
in order to prevent a manual installation from source.
You can look up the latest supported version number here.
Ensure that at least PyTorch 1.4.0 is installed and verify that cuda/bin
and cuda/include
are in your $PATH
and $CPATH
respectively, e.g.:
$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0
$ python -c "import torch; print(torch.__version__)"
>>> 1.1.0
$ echo $PATH
>>> /usr/local/cuda/bin:...
$ echo $CPATH
>>> /usr/local/cuda/include:...
Then run:
pip install torch-cluster
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via TORCH_CUDA_ARCH_LIST
, e.g.:
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight). The GPU algorithm is adapted from Fagginger Auer and Bisseling: A GPU Algorithm for Greedy Graph Matching (LNCS 2012)
import torch
from torch_cluster import graclus_cluster
row = torch.tensor([0, 1, 1, 2])
col = torch.tensor([1, 0, 2, 1])
weight = torch.tensor([1., 1., 1., 1.]) # Optional edge weights.
cluster = graclus_cluster(row, col, weight)
print(cluster)
tensor([0, 0, 1])
A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
import torch
from torch_cluster import grid_cluster
pos = torch.tensor([[0., 0.], [11., 9.], [2., 8.], [2., 2.], [8., 3.]])
size = torch.Tensor([5, 5])
cluster = grid_cluster(pos, size)
print(cluster)
tensor([0, 5, 3, 0, 1])
A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.
import torch
from torch_cluster import fps
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
index = fps(x, batch, ratio=0.5, random_start=False)
print(index)
tensor([0, 3])
Computes graph edges to the nearest k points.
Args:
[N, F]
.[N]
, which assigns each node to a specific example. batch
needs to be sorted. (default: None
)True
, the graph will contain self-loops. (default: False
)"source_to_target"
or "target_to_source"
). (default: "source_to_target"
)True
, will use the Cosine distance instead of Euclidean distance to find nearest neighbors. (default: False
)batch
is not None
, or the input lies on the GPU. (default: 1
)import torch
from torch_cluster import knn_graph
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
[0, 0, 1, 1, 2, 2, 3, 3]])
Computes graph edges to all points within a given distance.
Args:
[N, F]
.[N]
, which assigns each node to a specific example. batch
needs to be sorted. (default: None
)True
, the graph will contain self-loops. (default: False
)max_num_neighbors
, returned neighbors are picked randomly. (default: 32
)"source_to_target"
or "target_to_source"
). (default: "source_to_target"
)batch
is not None
, or the input lies on the GPU. (default: 1
)import torch
from torch_cluster import radius_graph
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = radius_graph(x, r=2.5, batch=batch, loop=False)
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
[0, 0, 1, 1, 2, 2, 3, 3]])
Clusters points in x together which are nearest to a given query point in y.
batch_{x,y}
vectors need to be sorted.
import torch
from torch_cluster import nearest
x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch_x = torch.tensor([0, 0, 0, 0])
y = torch.Tensor([[-1, 0], [1, 0]])
batch_y = torch.tensor([0, 0])
cluster = nearest(x, y, batch_x, batch_y)
print(cluster)
tensor([0, 0, 1, 1])
Samples random walks of length walk_length
from all node indices in start
in the graph given by (row, col)
.
import torch
from torch_cluster import random_walk
row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4])
col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3])
start = torch.tensor([0, 1, 2, 3, 4])
walk = random_walk(row, col, start, walk_length=3)
print(walk)
tensor([[0, 1, 2, 4],
[1, 3, 4, 2],
[2, 4, 2, 1],
[3, 4, 2, 4],
[4, 3, 1, 0]])
pytest
torch-cluster
also offers a C++ API that contains C++ equivalent of python models.
export Torch_DIR=`python -c 'import torch;print(torch.utils.cmake_prefix_path)'`
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
FAQs
PyTorch Extension Library of Optimized Graph Cluster Algorithms
We found that torch-cluster demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.