
Research
npm Malware Targets Telegram Bot Developers with Persistent SSH Backdoors
Malicious npm packages posing as Telegram bot libraries install SSH backdoors and exfiltrate data from Linux developer machines.
Ultimate data validation tool built on top of the typing module
Features:
__init__
: SomeModel(**kwargs)
__setattr__
: some_instance.some_field = value
min_value
, max_value
(based on <
and >
)min_length
, max_length
, size
(based on len()
)Options(parser=int, serializer=str)
alias
for incoming keys and rename
for outgoing keys: d: int = Options(alias='dyn', rename='dynamic')
allow
ed values: Options(allow=[1, 2, 3])
validators
: Options(validators=[is_odd, is_even])
data: List[SomeModel] = Options(auto_pack=True, packer=SomeModel)
options
can be callable: Options(min_value=dynamic_min_value)
With pip:
pip install validate-it
import re
from datetime import datetime
from typing import Dict, List, Union, Optional
from validate_it import schema, Options
class IsNotEmailError(Exception):
pass
def is_email(name, key, value, root):
if not re.match(r"[^@]+@[^@]+\.[^@]+", value):
raise IsNotEmailError(f"{key}: is not email")
return value
@schema
class Example:
# required fields
field_a: datetime
field_b: float
# required fields with defaults
field_c: str = "unknown"
field_d: int = 9
# required fields with nested types
field_e: Dict[int, str]
field_f: List[int]
# optional fields
field_g: Optional[int]
field_h: Union[int, None] # equivalent of Optional[int]
# with some validators:
fields_i: int = Options(default=0, max_value=100, min_value=100)
fields_j: str = Options(size=10)
fields_k: str = Options(min_length=10, max_length=20)
fields_l: List[str] = Options(size=5)
fields_m: str = Options(validators=[is_email])
fields_n: int = Options(allowed=[1, 2, 3])
# with search (input) alias:
fields_o: int = Options(alias="field_n")
# with rename (output) alias:
fields_p: int = Options(rename="field_q")
# with serializer used in #to_dict(), outgoing value is str type
fields_q: int = Options(serializer=str)
# with parser used in #from_dict() or direct setattr, incoming value will be parsed as int
fields_r: int = Options(parser=int)
from typing import List
from validate_it import *
@schema
class Simple:
a: int
b: int
simple = Simple(a=1, b=2)
simple.a = 2
simple.b = 3
try:
simple.a = 'not int'
except TypeError:
print("Wrong type")
@schema
class Owner:
first_name: str
last_name: str
@schema
class Characteristics:
cc: float = Options(min_value=0.0)
hp: int = Options(min_value=0)
@schema
class Car:
name: str = Options(min_length=2, max_length=20)
owners: List[Owner] = Options(auto_pack=True, packer=pack_value)
characteristics: Characteristics = Options(default=lambda: {"cc": 0.0, "hp": 0}, auto_pack=True, packer=pack_value)
convert: bool = Options(parser=bool)
_data = {
"name": "Shelby GT500",
"owners": [
{
"first_name": "Randall",
"last_name": "Raines",
}
],
"characteristics": {
"cc": 4.7,
"hp": 306
},
"unknown_field": 10,
"convert": 1
}
_expected = {
"name": "Shelby GT500",
"owners": [
{
"first_name": "Randall",
"last_name": "Raines",
}
],
"characteristics": {
"cc": 4.7,
"hp": 306
},
"convert": "1"
}
car = Car(**_data)
assert to_dict(car) == _expected
from validate_it import *
from dataclasses import dataclass
@schema
@dataclass
class Simple:
a: int
b: int
simple = Simple(a=1, b=2)
simple.a = 2
simple.b = 3
try:
simple.a = 'not int'
except TypeError:
print("Wrong type")
from validate_it import *
@schema
class User:
first_name: str = Options(alias="f")
last_name: str = Options(alias="l")
_in_data = {
"f": "John",
"l": "Connor"
}
user = User(**_in_data)
assert to_dict(user) == {"first_name": "John", "last_name": "Connor"}
from validate_it import *
from accordion import compress
@schema
class Player:
nickname: str = Options(alias="info.nickname")
intelligence: int = Options(alias="characteristics/0")
dexterity: int = Options(alias="characteristics/1")
strength: int = Options(alias="characteristics/2")
vitality: int = Options(alias="characteristics/3")
_in_data = {
"info": {
"nickname": "Killer777",
},
"characteristics": [
7,
55,
11,
44
]
}
player = Player(**compress(_in_data))
assert to_dict(player) == {
"nickname": "Killer777",
"intelligence": 7,
"dexterity": 55,
"strength": 11,
"vitality": 44
}
and back:
from validate_it import *
from accordion import expand
@schema
class Player:
nickname: str = Options(rename="info.nickname")
intelligence: int = Options(rename="characteristics/0")
dexterity: int = Options(rename="characteristics/1")
strength: int = Options(rename="characteristics/2")
vitality: int = Options(rename="characteristics/3")
_in_data = {
"nickname": "Killer777",
"intelligence": 7,
"dexterity": 55,
"strength": 11,
"vitality": 44
}
player = Player(**_in_data)
assert expand(to_dict(player)) == {
"info": {
"nickname": "Killer777",
},
"characteristics": [
7,
55,
11,
44
]
}
Tested with python3.6
, python3.7
, pypy3.6-7.0.0
FAQs
Ultimate data validation tool built on top of the typing module
We found that validate-it demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Malicious npm packages posing as Telegram bot libraries install SSH backdoors and exfiltrate data from Linux developer machines.
Security News
pip, PDM, pip-audit, and the packaging library are already adding support for Python’s new lock file format.
Product
Socket's Go support is now generally available, bringing automatic scanning and deep code analysis to all users with Go projects.