
Security News
Crates.io Implements Trusted Publishing Support
Crates.io adds Trusted Publishing support, enabling secure GitHub Actions-based crate releases without long-lived API tokens.
Ultimate data validation tool built on top of the typing module
Features:
__init__
: SomeModel(**kwargs)
__setattr__
: some_instance.some_field = value
min_value
, max_value
(based on <
and >
)min_length
, max_length
, size
(based on len()
)Options(parser=int, serializer=str)
alias
for incoming keys and rename
for outgoing keys: d: int = Options(alias='dyn', rename='dynamic')
allow
ed values: Options(allow=[1, 2, 3])
validators
: Options(validators=[is_odd, is_even])
data: List[SomeModel] = Options(auto_pack=True, packer=SomeModel)
options
can be callable: Options(min_value=dynamic_min_value)
With pip:
pip install validate-it
import re
from datetime import datetime
from typing import Dict, List, Union, Optional
from validate_it import schema, Options
class IsNotEmailError(Exception):
pass
def is_email(name, key, value, root):
if not re.match(r"[^@]+@[^@]+\.[^@]+", value):
raise IsNotEmailError(f"{key}: is not email")
return value
@schema
class Example:
# required fields
field_a: datetime
field_b: float
# required fields with defaults
field_c: str = "unknown"
field_d: int = 9
# required fields with nested types
field_e: Dict[int, str]
field_f: List[int]
# optional fields
field_g: Optional[int]
field_h: Union[int, None] # equivalent of Optional[int]
# with some validators:
fields_i: int = Options(default=0, max_value=100, min_value=100)
fields_j: str = Options(size=10)
fields_k: str = Options(min_length=10, max_length=20)
fields_l: List[str] = Options(size=5)
fields_m: str = Options(validators=[is_email])
fields_n: int = Options(allowed=[1, 2, 3])
# with search (input) alias:
fields_o: int = Options(alias="field_n")
# with rename (output) alias:
fields_p: int = Options(rename="field_q")
# with serializer used in #to_dict(), outgoing value is str type
fields_q: int = Options(serializer=str)
# with parser used in #from_dict() or direct setattr, incoming value will be parsed as int
fields_r: int = Options(parser=int)
from typing import List
from validate_it import *
@schema
class Simple:
a: int
b: int
simple = Simple(a=1, b=2)
simple.a = 2
simple.b = 3
try:
simple.a = 'not int'
except TypeError:
print("Wrong type")
@schema
class Owner:
first_name: str
last_name: str
@schema
class Characteristics:
cc: float = Options(min_value=0.0)
hp: int = Options(min_value=0)
@schema
class Car:
name: str = Options(min_length=2, max_length=20)
owners: List[Owner] = Options(auto_pack=True, packer=pack_value)
characteristics: Characteristics = Options(default=lambda: {"cc": 0.0, "hp": 0}, auto_pack=True, packer=pack_value)
convert: bool = Options(parser=bool)
_data = {
"name": "Shelby GT500",
"owners": [
{
"first_name": "Randall",
"last_name": "Raines",
}
],
"characteristics": {
"cc": 4.7,
"hp": 306
},
"unknown_field": 10,
"convert": 1
}
_expected = {
"name": "Shelby GT500",
"owners": [
{
"first_name": "Randall",
"last_name": "Raines",
}
],
"characteristics": {
"cc": 4.7,
"hp": 306
},
"convert": "1"
}
car = Car(**_data)
assert to_dict(car) == _expected
from validate_it import *
from dataclasses import dataclass
@schema
@dataclass
class Simple:
a: int
b: int
simple = Simple(a=1, b=2)
simple.a = 2
simple.b = 3
try:
simple.a = 'not int'
except TypeError:
print("Wrong type")
from validate_it import *
@schema
class User:
first_name: str = Options(alias="f")
last_name: str = Options(alias="l")
_in_data = {
"f": "John",
"l": "Connor"
}
user = User(**_in_data)
assert to_dict(user) == {"first_name": "John", "last_name": "Connor"}
from validate_it import *
from accordion import compress
@schema
class Player:
nickname: str = Options(alias="info.nickname")
intelligence: int = Options(alias="characteristics/0")
dexterity: int = Options(alias="characteristics/1")
strength: int = Options(alias="characteristics/2")
vitality: int = Options(alias="characteristics/3")
_in_data = {
"info": {
"nickname": "Killer777",
},
"characteristics": [
7,
55,
11,
44
]
}
player = Player(**compress(_in_data))
assert to_dict(player) == {
"nickname": "Killer777",
"intelligence": 7,
"dexterity": 55,
"strength": 11,
"vitality": 44
}
and back:
from validate_it import *
from accordion import expand
@schema
class Player:
nickname: str = Options(rename="info.nickname")
intelligence: int = Options(rename="characteristics/0")
dexterity: int = Options(rename="characteristics/1")
strength: int = Options(rename="characteristics/2")
vitality: int = Options(rename="characteristics/3")
_in_data = {
"nickname": "Killer777",
"intelligence": 7,
"dexterity": 55,
"strength": 11,
"vitality": 44
}
player = Player(**_in_data)
assert expand(to_dict(player)) == {
"info": {
"nickname": "Killer777",
},
"characteristics": [
7,
55,
11,
44
]
}
Tested with python3.6
, python3.7
, pypy3.6-7.0.0
FAQs
Ultimate data validation tool built on top of the typing module
We found that validate-it demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Crates.io adds Trusted Publishing support, enabling secure GitHub Actions-based crate releases without long-lived API tokens.
Research
/Security News
Undocumented protestware found in 28 npm packages disrupts UI for Russian-language users visiting Russian and Belarusian domains.
Research
/Security News
North Korean threat actors deploy 67 malicious npm packages using the newly discovered XORIndex malware loader.