
Security News
Browserslist-rs Gets Major Refactor, Cutting Binary Size by Over 1MB
Browserslist-rs now uses static data to reduce binary size by over 1MB, improving memory use and performance for Rust-based frontend tools.
Zipcodes is a simple library for querying U.S. zipcodes.
The Python sqlite3
module is not required in order to use this package.
>>> import zipcodes
>>> assert zipcodes.is_real('77429')
>>> assert len(zipcodes.similar_to('7742')) != 0
>>> exact_zip = zipcodes.matching('77429')[0]
>>> filtered_zips = zipcodes.filter_by(city="Cypress", state="TX")
>>> assert exact_zip in filtered_zips
>>> pprint.pprint(exact_zip)
{'acceptable_cities': [],
'active': True,
'area_codes': ['281', '832'],
'city': 'Cypress',
'country': 'US',
'county': 'Harris County',
'lat': '29.9857',
'long': '-95.6548',
'state': 'TX',
'timezone': 'America/Chicago',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '77429',
'zip_code_type': 'STANDARD'}[
â ď¸ The zipcode data was last updated on: Feb. 16, 2025 â ď¸
Zipcodes is available on PyPI:
$ python -m pip install zipcodes
Zipcodes supports Python 2.6+ and Python 3.2+.
Add a data file to your PyInstaller bundle with the --add-data
flag.
--add-data "<path-to-package-install>/zipcodes/zips.json.bz2:zipcodes"
--add-data "<path-to-package-install>\zipcodes\zips.json.bz2;zipcodes"
The build script for the zipcode data outputs a JSON file containing all the zipcode data and zipped using bzip2. The data sources are stored under build/app/data
.
Build the zipcode data for distribution:
$ build/app/__init__.py # outputs `zipcodes/zips.json.bz2`
The tests are defined in a declarative, table-based format that generates test cases.
Run the tests directly:
$ python tests/__init__.py
>>> from pprint import pprint
>>> import zipcodes
>>> # Simple zip-code matching.
>>> pprint(zipcodes.matching('77429'))
[{'acceptable_cities': [],
'active': True,
'area_codes': ['281', '832'],
'city': 'Cypress',
'country': 'US',
'county': 'Harris County',
'lat': '29.9857',
'long': '-95.6548',
'state': 'TX',
'timezone': 'America/Chicago',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '77429',
'zip_code_type': 'STANDARD'}]
>>> # Handles of Zip+4 zip-codes nicely. :)
>>> pprint(zipcodes.matching('77429-1145'))
[{'acceptable_cities': [],
'active': True,
'area_codes': ['281', '832'],
'city': 'Cypress',
'country': 'US',
'county': 'Harris County',
'lat': '29.9857',
'long': '-95.6548',
'state': 'TX',
'timezone': 'America/Chicago',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '77429',
'zip_code_type': 'STANDARD'}]
>>> # Will try to handle invalid zip-codes gracefully...
>>> print(zipcodes.matching('06463'))
[]
>>> # Until it cannot.
>>> zipcodes.matching('0646a')
Traceback (most recent call last):
...
ValueError: Invalid characters, zipcode may only contain digits and "-".
>>> zipcodes.matching('064690')
Traceback (most recent call last):
...
ValueError: Invalid format, zipcode must be of the format: "#####" or "#####-####"
>>> zipcodes.matching(None)
Traceback (most recent call last):
...
TypeError: Invalid type, zipcode must be a string.
>>> # Whether the zip-code exists within the database.
>>> print(zipcodes.is_real('06463'))
False
>>> # How handy!
>>> print(zipcodes.is_real('06469'))
True
>>> # Search for zipcodes that begin with a pattern.
>>> pprint(zipcodes.similar_to('1018'))
[{'acceptable_cities': [],
'active': False,
'area_codes': ['212'],
'city': 'New York',
'country': 'US',
'county': 'New York County',
'lat': '40.71',
'long': '-74',
'state': 'NY',
'timezone': 'America/New_York',
'unacceptable_cities': ['J C Penney'],
'world_region': 'NA',
'zip_code': '10184',
'zip_code_type': 'UNIQUE'},
{'acceptable_cities': [],
'active': True,
'area_codes': ['212'],
'city': 'New York',
'country': 'US',
'county': 'New York County',
'lat': '40.7143',
'long': '-74.0067',
'state': 'NY',
'timezone': 'America/New_York',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '10185',
'zip_code_type': 'PO BOX'}]
>>> # Use filter_by to filter a list of zip-codes by specific attribute->value pairs.
>>> pprint(zipcodes.filter_by(city="Old Saybrook"))
[{'acceptable_cities': [],
'active': True,
'area_codes': ['860'],
'city': 'Old Saybrook',
'country': 'US',
'county': 'Middlesex County',
'lat': '41.3015',
'long': '-72.3879',
'state': 'CT',
'timezone': 'America/New_York',
'unacceptable_cities': ['Fenwick'],
'world_region': 'NA',
'zip_code': '06475',
'zip_code_type': 'STANDARD'}]
>>> # Arbitrary nesting of similar_to and filter_by calls, allowing for great precision while filtering.
>>> pprint(zipcodes.similar_to('2', zips=zipcodes.filter_by(active=True, city='Windsor')))
[{'acceptable_cities': [],
'active': True,
'area_codes': ['757'],
'city': 'Windsor',
'country': 'US',
'county': 'Isle of Wight County',
'lat': '36.8628',
'long': '-76.7143',
'state': 'VA',
'timezone': 'America/New_York',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '23487',
'zip_code_type': 'STANDARD'},
{'acceptable_cities': ['Askewville'],
'active': True,
'area_codes': ['252'],
'city': 'Windsor',
'country': 'US',
'county': 'Bertie County',
'lat': '35.9942',
'long': '-76.9422',
'state': 'NC',
'timezone': 'America/New_York',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '27983',
'zip_code_type': 'STANDARD'},
{'acceptable_cities': [],
'active': True,
'area_codes': ['803'],
'city': 'Windsor',
'country': 'US',
'county': 'Aiken County',
'lat': '33.4730',
'long': '-81.5132',
'state': 'SC',
'timezone': 'America/New_York',
'unacceptable_cities': [],
'world_region': 'NA',
'zip_code': '29856',
'zip_code_type': 'STANDARD'}]
>>> # Have any other ideas? Make a pull request and start contributing today!
>>> # Made with love by Sean Pianka
FAQs
Query U.S. state zipcodes without SQLite.
We found that zipcodes demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Browserslist-rs now uses static data to reduce binary size by over 1MB, improving memory use and performance for Rust-based frontend tools.
Research
Security News
Eight new malicious Firefox extensions impersonate games, steal OAuth tokens, hijack sessions, and exploit browser permissions to spy on users.
Security News
The official Go SDK for the Model Context Protocol is in development, with a stable, production-ready release expected by August 2025.