Atlas Api This is the documentation and guide for the Atlas API. You can use it to create and update boxes, versions and providers.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and outupt, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.6.3 The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Microbo is a micro framework to create micro API webservers in go. A webserver that use Microbo require a very minimal configuration (just create a .env file) and support a DB connection, CORS, authentication with JWT and HTTP2 out of the box.
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 8.5.9 Final The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Iris takes advantage of the vendor directory feature wisely: https://docs.google.com/document/d/1Bz5-UB7g2uPBdOx-rw5t9MxJwkfpx90cqG9AFL0JAYo. You get truly reproducible builds, as this method guards against upstream renames and deletes. A simple copy-paste and `go get ./...` to resolve two dependencies: https://github.com/kataras/golog and the https://github.com/iris-contrib/httpexpect will work for ever even for older versions, the newest version can be retrieved by `go get` but this file contains documentation for an older version of Iris. Follow the instructions below: 1. install the Go Programming Language: https://golang.org/dl 2. clear yours previously `$GOPATH/src/github.com/kataras/iris` folder or create new 3. download the Iris v8.5.9 (final): https://github.com/kataras/iris/archive/v8.zip 4. extract the contents of the `iris-v8` folder that's inside the downloaded zip file to your `$GOPATH/src/github.com/kataras/iris` 5. navigate to your `$GOPATH/src/github.com/kataras/iris` folder if you're not already there and open a terminal/command prompt, execute the command: `go get ./...` and you're ready to GO:) Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advandage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller struct. Persistence data inside your Controller struct (share data between requests) via `iris:"persistence"` tag right to the field or Bind using `app.Controller("/" , new(myController), theBindValue)`. Models inside your Controller struct (set-ed at the Method function and rendered by the View) via `iris:"model"` tag right to the field, i.e User UserModel `iris:"model" name:"user"` view will recognise it as `{{.user}}`. If `name` tag is missing then it takes the field's name, in this case the `"User"`. Access to the request path and its parameters via the `Path and Params` fields. Access to the template file that should be rendered via the `Tmpl` field. Access to the template data that should be rendered inside the template file via `Data` field. Access to the template layout via the `Layout` field. Access to the low-level `iris.Context` via the `Ctx` field. Get the relative request path by using the controller's name via `RelPath()`. Get the relative template path directory by using the controller's name via `RelTmpl()`. Flow as you used to, `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Inheritance, recursively, see for example our `mvc.SessionController/iris.SessionController`, it has the `mvc.Controller/iris.Controller` as an embedded field and it adds its logic to its `BeginRequest`. Source file: https://github.com/kataras/iris/blob/v8/mvc/session_controller.go. Read access to the current route via the `Route` field. Support for more than one input arguments (map to dynamic request path parameters). Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. The example below is not intended to be used in production but it's a good showcase of some of the return types we saw before; Another good example with a typical folder structure, that many developers are used to work, can be found at: https://github.com/kataras/iris/tree/v8/_examples/mvc/overview. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. Follow the examples at: https://github.com/kataras/iris/tree/v8/_examples/#mvc At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/v8/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/v8/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/v8/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page:
Package goji provides an out-of-box web server with reasonable defaults. Example: This package exists purely as a convenience to programmers who want to get started as quickly as possible. It draws almost all of its code from goji's subpackages, the most interesting of which is goji/web, and where most of the documentation for the web framework lives. A side effect of this package's ease-of-use is the fact that it is opinionated. If you don't like (or have outgrown) its opinions, it should be straightforward to use the APIs of goji's subpackages to reimplement things to your liking. Both methods of using this library are equally well supported. Goji requires Go 1.2 or newer.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package iris is a fully-featured HTTP/2 backend web framework written entirely in Google’s Go Language. Source code and other details for the project are available at GitHub: The only requirement is the Go Programming Language, at least version 1.8 Example code: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, Iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: Iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of Iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known paramete and custom http errors, now it's time to see wildcard parameters and macros. Iris, like net/http std package registers route's handlers by a Handler, the Iris' type of handler is just a func(ctx context.Context) where context comes from github.com/kataras/iris/context. Until go 1.9 you will have to import that package too, after go 1.9 this will be not be necessary. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, Iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, I am calling them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that Iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: Iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context.ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/intermediate/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Built'n Middleware: Community Middleware: Home Page:
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and outupt, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package main provides primitives to interact with the openapi HTTP API. Code generated by github.com/deepmap/oapi-codegen version v1.11.0 DO NOT EDIT.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package govuegui provides a simple gui, which can be used via a http server inside the browser. There are three different elements for building the gui. Every level gets a identifier as a string. First level is the Form. Every Form has one submit button. A form can have boxes. It depends on the implementation how the boxes are rendered. Inside of a box the fields are defined. The api let's you define everything on a very simple way: The gui will be show up inside the browser of the user as a webapp. The app uses vuejs with a websocket connection.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package aw is a utility library/framework for Alfred 3 workflows https://www.alfredapp.com/ It provides APIs for interacting with Alfred (e.g. Script Filter feedback) and the workflow environment (variables, caches, settings). NOTE: AwGo is currently in development. The API *will* change and should not be considered stable until v1.0. Until then, vendoring AwGo (e.g. with dep or vgo) is strongly recommended. As of AwGo 0.14, all applicable features of Alfred 3.6 are supported. The main features are: Typically, you'd call your program's main entry point via Run(). This way, the library will rescue any panic, log the stack trace and show an error message to the user in Alfred. In the Script box (Language = "/bin/bash"): To generate results for Alfred to show in a Script Filter, use the feedback API of Workflow: You can set workflow variables (via feedback) with Workflow.Var, Item.Var and Modifier.Var. See Workflow.SendFeedback for more documentation. Alfred requires a different JSON format if you wish to set workflow variables. Use the ArgVars (named for its equivalent element in Alfred) struct to generate output from Run Script actions. Be sure to set TextErrors to true to prevent Workflow from generating Alfred JSON if it catches a panic: See ArgVars for more information. New() creates a *Workflow using the default values and workflow settings read from environment variables set by Alfred. You can change defaults by passing one or more Options to New(). If you do not want to use Alfred's environment variables, or they aren't set (i.e. you're not running the code in Alfred), you must pass an Env as the first Option to New() using CustomEnv(). A Workflow can be re-configured later using its Configure() method. Check out the _examples/ subdirectory for some simple, but complete, workflows which you can copy to get started. See the documentation for Option for more information on configuring a Workflow. AwGo can filter Script Filter feedback using a Sublime Text-like fuzzy matching algorithm. Workflow.Filter() sorts feedback Items against the provided query, removing those that do not match. Sorting is performed by subpackage fuzzy via the fuzzy.Sortable interface. See _examples/fuzzy for a basic demonstration. See _examples/bookmarks for a demonstration of implementing fuzzy.Sortable on your own structs and customising the fuzzy sort settings. AwGo automatically configures the default log package to write to STDERR (Alfred's debugger) and a log file in the workflow's cache directory. The log file is necessary because background processes aren't connected to Alfred, so their output is only visible in the log. It is rotated when it exceeds 1 MiB in size. One previous log is kept. AwGo detects when Alfred's debugger is open (Workflow.Debug() returns true) and in this case prepends filename:linenumber: to log messages. The Config struct (which is included in Workflow as Workflow.Config) provides an interface to the workflow's settings from the Workflow Environment Variables panel. https://www.alfredapp.com/help/workflows/advanced/variables/#environment Alfred exports these settings as environment variables, and you can read them ad-hoc with the Config.Get*() methods, and save values back to Alfred with Config.Set(). Using Config.To() and Config.From(), you can "bind" your own structs to the settings in Alfred: And to save a struct's fields to the workflow's settings in Alfred: See the documentation for Config.To and Config.From for more information, and _examples/settings for a demo workflow based on the API. The Alfred struct provides methods for the rest of Alfred's AppleScript API. Amongst other things, you can use it to tell Alfred to open, to search for a query, or to browse/action files & directories. See documentation of the Alfred struct for more information. AwGo provides a basic, but useful, API for loading and saving data. In addition to reading/writing bytes and marshalling/unmarshalling to/from JSON, the API can auto-refresh expired cache data. See Cache and Session for the API documentation. Workflow has three caches tied to different directories: These all share the same API. The difference is in when the data go away. Data saved with Session are deleted after the user closes Alfred or starts using a different workflow. The Cache directory is in a system cache directory, so may be deleted by the system or "System Maintenance" tools. The Data directory lives with Alfred's application data and would not normally be deleted. Subpackage util provides several functions for running script files and snippets of AppleScript/JavaScript code. See util for documentation and examples. AwGo offers a simple API to start/stop background processes via Workflow's RunInBackground(), IsRunning() and Kill() methods. This is useful for running checks for updates and other jobs that hit the network or take a significant amount of time to complete, allowing you to keep your Script Filters extremely responsive. See _examples/update and _examples/workflows for demonstrations of this API.
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.3.0 The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 11.1.1 The only requirement is the Go Programming Language, at least version 1.8 but 1.11.1 and above is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package ss (Sacrificial-Socket) is a Go server library and pure JS client library for managing communication between websockets, that has an API similar to Socket.IO, but feels less... well, Javascripty. Socket.IO is great, but nowadays all modern browsers support websockets natively, so in most cases there is no need to have websocket simulation fallbacks like XHR long polling or Flash. Removing these allows Sacrificial-Socket to be lightweight and very performant. Sacrificial-Socket supports rooms, roomcasts, broadcasts, and event emitting just like Socket.IO, but with one key difference. The data passed into event functions is not an interface{} that is implied to be a string or map[string]interface{}, but is always passed in as a []byte making it easier to unmarshal into your own JSON data structs, convert to a string, or keep as binary data without the need to check the data's type before processing it. It also means there aren't any unnecessary conversions to the data between the client and the server. Sacrificial-Socket also has a MultihomeBackend interface for syncronizing broadcasts and roomcasts across multiple instances of Sacrificial-Socket running on multiple machines. Out of the box Sacrificial-Socket provides a MultihomeBackend interface for the popular noSQL database MongoDB, one for the moderately popular key/value storage engine Redis, and one for the not so popular GRPC protocol, for syncronizing instances on multiple machines.
Package girc provides a high level, yet flexible IRC library for use with interacting with IRC servers. girc has support for user/channel tracking, as well as a few other neat features (like auto-reconnect). Much of what girc can do, can also be disabled. The goal is to provide a solid API that you don't necessarily have to work with out of the box if you don't want to. See the examples below for a few brief and useful snippets taking advantage of girc, which should give you a general idea of how the API works. The bare-minimum needed to get started with girc. Just connects and idles. Another basic example, however with this, we add simple !<command> responses to things. E.g. "!hello", "!stop", and "!restart". Very simple example that connects, joins a channel, and responds to "hello" with "hello world!".
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 8.5.9 Final The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Iris takes advantage of the vendor directory feature wisely: https://docs.google.com/document/d/1Bz5-UB7g2uPBdOx-rw5t9MxJwkfpx90cqG9AFL0JAYo. You get truly reproducible builds, as this method guards against upstream renames and deletes. A simple copy-paste and `go get ./...` to resolve two dependencies: https://github.com/kataras/golog and the https://github.com/iris-contrib/httpexpect will work for ever even for older versions, the newest version can be retrieved by `go get` but this file contains documentation for an older version of Iris. Follow the instructions below: 1. install the Go Programming Language: https://golang.org/dl 2. clear yours previously `$GOPATH/src/github.com/kataras/iris` folder or create new 3. download the Iris v8.5.9 (final): https://github.com/kataras/iris/archive/v8.zip 4. extract the contents of the `iris-v8` folder that's inside the downloaded zip file to your `$GOPATH/src/github.com/kataras/iris` 5. navigate to your `$GOPATH/src/github.com/kataras/iris` folder if you're not already there and open a terminal/command prompt, execute the command: `go get ./...` and you're ready to GO:) Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advandage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller struct. Persistence data inside your Controller struct (share data between requests) via `iris:"persistence"` tag right to the field or Bind using `app.Controller("/" , new(myController), theBindValue)`. Models inside your Controller struct (set-ed at the Method function and rendered by the View) via `iris:"model"` tag right to the field, i.e User UserModel `iris:"model" name:"user"` view will recognise it as `{{.user}}`. If `name` tag is missing then it takes the field's name, in this case the `"User"`. Access to the request path and its parameters via the `Path and Params` fields. Access to the template file that should be rendered via the `Tmpl` field. Access to the template data that should be rendered inside the template file via `Data` field. Access to the template layout via the `Layout` field. Access to the low-level `iris.Context` via the `Ctx` field. Get the relative request path by using the controller's name via `RelPath()`. Get the relative template path directory by using the controller's name via `RelTmpl()`. Flow as you used to, `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Inheritance, recursively, see for example our `mvc.SessionController/iris.SessionController`, it has the `mvc.Controller/iris.Controller` as an embedded field and it adds its logic to its `BeginRequest`. Source file: https://github.com/kataras/iris/blob/v8/mvc/session_controller.go. Read access to the current route via the `Route` field. Support for more than one input arguments (map to dynamic request path parameters). Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. The example below is not intended to be used in production but it's a good showcase of some of the return types we saw before; Another good example with a typical folder structure, that many developers are used to work, can be found at: https://github.com/kataras/iris/tree/v8/_examples/mvc/overview. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. Follow the examples at: https://github.com/kataras/iris/tree/v8/_examples/#mvc At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/v8/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/v8/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/v8/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page:
Package iris is a fully-featured HTTP/2 backend web framework written entirely in Google’s Go Language. Source code and other details for the project are available at GitHub: The only requirement is the Go Programming Language, at least version 1.8 Example code: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, Iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: Iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of Iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known paramete and custom http errors, now it's time to see wildcard parameters and macros. Iris, like net/http std package registers route's handlers by a Handler, the Iris' type of handler is just a func(ctx context.Context) where context comes from github.com/kataras/iris/context. Until go 1.9 you will have to import that package too, after go 1.9 this will be not be necessary. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, Iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, I am calling them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that Iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: Iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context.ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/intermediate/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Built'n Middleware: Community Middleware: Home Page:
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Vagrant Cloud Api This is the documentation and guide for the Vagrant Cloud API. You can use it to create and update boxes, versions and providers.
SQL Schema migration tool for Go. Key features: To install the library and command line program, use the following: The main command is called sql-migrate. Each command requires a configuration file (which defaults to dbconfig.yml, but can be specified with the -config flag). This config file should specify one or more environments: The `table` setting is optional and will default to `gorp_migrations`. The environment that will be used can be specified with the -env flag (defaults to development). Use the --help flag in combination with any of the commands to get an overview of its usage: The up command applies all available migrations. By contrast, down will only apply one migration by default. This behavior can be changed for both by using the -limit parameter. The redo command will unapply the last migration and reapply it. This is useful during development, when you're writing migrations. Use the status command to see the state of the applied migrations: If you are using MySQL, you must append ?parseTime=true to the datasource configuration. For example: See https://github.com/go-sql-driver/mysql#parsetime for more information. Import sql-migrate into your application: Set up a source of migrations, this can be from memory, from a set of files or from bindata (more on that later): Then use the Exec function to upgrade your database: Note that n can be greater than 0 even if there is an error: any migration that succeeded will remain applied even if a later one fails. The full set of capabilities can be found in the API docs below. Migrations are defined in SQL files, which contain a set of SQL statements. Special comments are used to distinguish up and down migrations. You can put multiple statements in each block, as long as you end them with a semicolon (;). If you have complex statements which contain semicolons, use StatementBegin and StatementEnd to indicate boundaries: The order in which migrations are applied is defined through the filename: sql-migrate will sort migrations based on their name. It's recommended to use an increasing version number or a timestamp as the first part of the filename. Normally each migration is run within a transaction in order to guarantee that it is fully atomic. However some SQL commands (for example creating an index concurrently in PostgreSQL) cannot be executed inside a transaction. In order to execute such a command in a migration, the migration can be run using the notransaction option: If you like your Go applications self-contained (that is: a single binary): use packr (https://github.com/gobuffalo/packr) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Use the PackrMigrationSource in your application to find the migrations: If you already have a box and would like to use a subdirectory: As an alternative, but slightly less maintained, you can use bindata (https://github.com/shuLhan/go-bindata) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Then use bindata to generate a .go file with the migrations embedded: The resulting bindata.go file will contain your migrations. Remember to regenerate your bindata.go file whenever you add/modify a migration (go generate will help here, once it arrives). Use the AssetMigrationSource in your application to find the migrations: Both Asset and AssetDir are functions provided by bindata. Then proceed as usual. Adding a new migration source means implementing MigrationSource. The resulting slice of migrations will be executed in the given order, so it should usually be sorted by the Id field.
SQL Schema migration tool for Go. Key features: To install the library and command line program, use the following: The main command is called sql-migrate. Each command requires a configuration file (which defaults to dbconfig.yml, but can be specified with the -config flag). This config file should specify one or more environments: The `table` setting is optional and will default to `gorp_migrations`. The environment that will be used can be specified with the -env flag (defaults to development). Use the --help flag in combination with any of the commands to get an overview of its usage: The up command applies all available migrations. By contrast, down will only apply one migration by default. This behavior can be changed for both by using the -limit parameter. The redo command will unapply the last migration and reapply it. This is useful during development, when you're writing migrations. Use the status command to see the state of the applied migrations: If you are using MySQL, you must append ?parseTime=true to the datasource configuration. For example: See https://github.com/go-sql-driver/mysql#parsetime for more information. Import sql-migrate into your application: Set up a source of migrations, this can be from memory, from a set of files or from bindata (more on that later): Then use the Exec function to upgrade your database: Note that n can be greater than 0 even if there is an error: any migration that succeeded will remain applied even if a later one fails. The full set of capabilities can be found in the API docs below. Migrations are defined in SQL files, which contain a set of SQL statements. Special comments are used to distinguish up and down migrations. You can put multiple statements in each block, as long as you end them with a semicolon (;). If you have complex statements which contain semicolons, use StatementBegin and StatementEnd to indicate boundaries: The order in which migrations are applied is defined through the filename: sql-migrate will sort migrations based on their name. It's recommended to use an increasing version number or a timestamp as the first part of the filename. Normally each migration is run within a transaction in order to guarantee that it is fully atomic. However some SQL commands (for example creating an index concurrently in PostgreSQL) cannot be executed inside a transaction. In order to execute such a command in a migration, the migration can be run using the notransaction option: For Enable Patching migrations use function EnablePatchMode(true) This mode required to use the following migration name format: 0000_00_name.sql (^(\d+)_(\d+)_.+$) and new structure migrations table. Recommended set new table name or delete old migration table SetTable("migrations") It is possible to delete the first versions of major migrations. For example, two files 0001_00_name.sql and 0001_01_name.sql can be merged into one file 0001_01_name.sql. If you like your Go applications self-contained (that is: a single binary): use packr (https://github.com/gobuffalo/packr) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Use the PackrMigrationSource in your application to find the migrations: If you already have a box and would like to use a subdirectory: As an alternative, but slightly less maintained, you can use bindata (https://github.com/shuLhan/go-bindata) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Then use bindata to generate a .go file with the migrations embedded: The resulting bindata.go file will contain your migrations. Remember to regenerate your bindata.go file whenever you add/modify a migration (go generate will help here, once it arrives). Use the AssetMigrationSource in your application to find the migrations: Both Asset and AssetDir are functions provided by bindata. Then proceed as usual. Adding a new migration source means implementing MigrationSource. The resulting slice of migrations will be executed in the given order, so it should usually be sorted by the Id field.
Package goji provides an out-of-box web server with reasonable defaults. Example: This package exists purely as a convenience to programmers who want to get started as quickly as possible. It draws almost all of its code from goji's subpackages, the most interesting of which is goji/web, and where most of the documentation for the web framework lives. A side effect of this package's ease-of-use is the fact that it is opinionated. If you don't like (or have outgrown) its opinions, it should be straightforward to use the APIs of goji's subpackages to reimplement things to your liking. Both methods of using this library are equally well supported. Goji requires Go 1.2 or newer.
Package sashay allows you to generate OpenAPI 3.0 (Swagger) files using executable Go code, including the same types you already use for parameter declaration and serialization. You don't have to worry about creating extensive Swagger-specific comments or editing a Swagger file by hand. You can get a good enough Swagger document with very little work, using the code you already have! - Use your existing serializable Go structs to document what an endpoint returns. Really, Sashay will figure out the OpenAPI contents using reflection. - Declare your parameters using Go structs. If you are binding and validating using structs in your endpoint handlers, you can use the same structs for Sashay. - You can extend Sashay to handle your own types and struct tags, such as if you use custom time/date types, or want to parse validation struct tags into something you can place in your OpenAPI doc. Creating a nicer OpenAPI 3.0 document from your existing code is generally a matter of adding a bit of annotation to struct tags or using some Sashay types around your API's types. See https://swagger.io/specification/ for more information about the OpenAPI 3.0 spec. There are generally three parts to defining and generating Swagger docs using Sashay: - Define the sashay.Sashay registry which holds all information that will be in the document. This is usually a singleton for an entire service, or passed to all route registration. - Define new sashay.Operation instances where you have your handlers, adding them to the registry using the Add method as you go. - Generate the YAML string using the WriteYAML method. In the following sections, we will go through the steps to build something very similar to the "Pet Store API" Swagger example. This is the default example API at https:/editor.swagger.io/#/. The "Pet Store API" OpenAPI 3.0 YAML file the service is based on is here: https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/petstore-expanded.yaml There is code for a "Pet Store API" Go server here: https://github.com/swagger-api/swagger-codegen/blob/master/samples/server/petstore/go-api-server/go/routers.go Note that this is for their Swagger 2.0 definition, which is much larger than the 3.0 definition. Our code will be based off that Pet Store code. There are many ways to structure a Go service; the Pet Store example is only one such structure, with centralized routing and general HTTP handlers. Sashay, being a library, can fit into any application setup. It just needs to get the right calls, which should be clear by the end, as the API has very few moving parts. In our example petstore.yaml file, we have the following settings that apply to the service, rather than any specific paths, operations, or resources: We can use the following code to create a *sashay.Sashay object that will generate that YAML. This can be a stateful singleton, placed somewhere accessible to all handlers and routers, like some common or config file. Later in our example, we create the instance in our main function, and pass it to the router: The way this code maps to the YAML should be pretty self-explanatory. For more information on any of these, you can refer to the OpenAPI documentation, as it maps cleanly. This code uses "apiKey" security, via AddAPIKeySecurity. The sashay.Sashay object also has AddBasicAuthSecurity and AddJWTSecurity methods available. An "operation" in OpenAPI 3.0 is a description for a path/route and method. For example, here is the GET /pets endpoint Swagger YAML: Let's go through the Go code required for that YAML. First there is the code for the models. These are probably not endpoint-specific, but shared for the entire application. There is nothing swagger-related to this code; it already exists for the service: Next there is the actual route handler. This also has nothing Swagger-specific. It is code that already exists for your service. Finally, we get to the route definitions/registration. This, too, is something that needs to happen for any service. The changes here have to do with registering a route adding it both to your HTTP framework's router, and the sashay.Sashay registry. Note that the sashay.Operation object has the method and path necessary to register routes in pretty much every framework. In this code, we have a custom Route struct that marries the Operation along with an http.HandlerFunc. Finally, there is the server startup code, usually in some sort of main() function. This code initializes a new sashay.Sashay instance, registers routes, and writes to a yaml file if the program is run with a -swagger argument. This code in particular is going to be different depending on your conventions; the following code is just an idea to show how this all fits together. That's all there is to it. You can see a fuller example in the petstore_test.go file, which contains the preceding code but with more routes. The sashay.Operation object supports defining an endpoint's parameters. Because parameter settings can be quite detailed, this package will parse some parameter settings from struct tags. Let's look at the Parameters field in the following sashay.Operation definition: The struct tags of "path", "header", and "query" define the name of the parameter in the path/header/query. Using the "json" tag indicates the parameter is included in the request body. This Operation generates the following YAML: The parameter struct definitions are nice, but the best feature is that they are actually executable Go code that you can use for the parameter validation and binding in your own endpoints! In practice, your Operation definitions will look something like this: The actual getUsersHandler code uses the same struct to describe itself as it does in code. The same is true for response types- the schema is built from the real objects, with the json struct tags, not separate documentation. Note that Sashay never uses $ref for parameters (resources in POST/PUT request bodies). Even if the same type is used for a request and a response, it'll be expanded in the requestBody section and a $ref in the response section. This may change in the future. Struct types can also be used in parameters. Usually, these will be nested structs for request bodies: You can see the requestBody YAML it generates: Note that out of the box, Sashay will treat simple custom types (like `type MyString string`) as their underlying simple type, and will walk any custom structs. However, sometimes you want to use Go struct types that are represented as data types in Swagger. Times are an exampmle of this: time.Time is a Go struct type, but we want to represent it with a string data type in Swagger (type: string, format: date-time). For example, let's say "month" is a common concept in our API, so we represent it with a type: When we have a struct field with a type of MyTime, we would normally get a schema of: However, what we actually want is something like this: We can define a mapping between custom types and a "data type transformer" to do this. For example, to get the desired Swagger we would use a SimpleDataTyper transformer: DefineDataType takes in an instance of a value to map into a data type and the DataTyper transformer function. SimpleDataTyper uses the given type and format strings. Sashay includes other built-in DataTypers: - DefaultDataTyper() will parse the "default" struct tag and write it into the "default" field. - ChainDataTyper calls one DataTyper after another. The most common usage is to use this around SimpleDataTyper and DefaultDataTyper, but feel free to get creative. - BuiltinDataTyperFor returns the default DataTyper behavior for a type. This is useful when you want to extend the behavior for a built-in type, but not entirely replace it (we use it below, for a custom string data typer behavior). The DataTyper function can get more creative, too. For example, it can parse struct fields to inform what should write into the Swagger file. Consider a "unit of time" type that can be used for any unit, rather than custom month, day, etc types: And using it for parameters looks like: We could use a DataTyper that reads the "timeunit" struct tag, and specifies the "format" field based on that: We can use DefineDataType to customize all sorts of behavior. One common usage is parsing tags to specify other information about a field, like we did with "timeunit" above. Perhaps we want to parse an "enum" tag that specifies valid values for a string field: Now, when we have a string with the "enum" struct tag, we will get the "enum" field in our YAML: The goal of Sashay is, you may recall, to reuse as much of your existing code as possible, and to build off it rather than require a bunch of custom annotation or documentation. In practice, this often means pulling this sort of data out of "validation" struct tags, rather than custom struct tags like "enum" or "timeunit", but the idea is the same. For an example of this in action, and a good basis for hooking your own validation needs up to Sashay, see validator_data_typer_test.go. It includes a fully-functional example using go-validator style struct tags to inform data type fields. The other part of sashay.Operation that may require some customization are usually responses. Sashay tries to be smart and enforce some conventions: - Successful POSTs returns a 201. - All other successful methods return a 200. - All operations get a 'default' error response. For example, let's look at the Go code to fetch an array of users (we can use an empty User slice, or a custom Users slice type would work fine). The 200 response is an array that points to references of the User schema, and the User and Error Model are defined in components/schemas: However, sometimes you need more advanced response information. In particular, you may want to document specific error conditions or return type shapes. You can use the swagger.Response or swagger.Responses object for this: Note the calls to NewResponse, and the Responses slice. In this way, the default codes can be overwritten, and multiple responses can be specified: Finally, there are a couple special cases for responses: - If a response is a string type, rather than a struct, it is assumed to be of content type text/plain. - If a response is an empty struct (`struct{}{}`), use application/json with no schema. Sashay treats value and pointer fields the same. In other words, *bool and bool will use the same data type/schema. When you register a data type (refer to DefineDataType), the same DataTyper is used for pointer fields of that type. The primary use case for pointer fields in Go is to represent optional fields. There's nothing much for Sashay to do with that information, because both parameters and object fields are optional/not-required in Swagger by default. For example, in parameters, "required: false" is the default. And for schemas (request bodies, responses), the "nullable: true" attribute is quite semantically different than the "optional" meant by a Go pointer field. In the future, Sashay may support more more extensive specification around required fields, but not right now.
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.0.0 The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
SQL Schema migration tool for Go. Key features: To install the library and command line program, use the following: The main command is called sql-migrate. Each command requires a configuration file (which defaults to dbconfig.yml, but can be specified with the -config flag). This config file should specify one or more environments: The `table` setting is optional and will default to `gorp_migrations`. The environment that will be used can be specified with the -env flag (defaults to development). Use the --help flag in combination with any of the commands to get an overview of its usage: The up command applies all available migrations. By contrast, down will only apply one migration by default. This behavior can be changed for both by using the -limit parameter. The redo command will unapply the last migration and reapply it. This is useful during development, when you're writing migrations. Use the status command to see the state of the applied migrations: If you are using MySQL, you must append ?parseTime=true to the datasource configuration. For example: See https://github.com/go-sql-driver/mysql#parsetime for more information. Import sql-migrate into your application: Set up a source of migrations, this can be from memory, from a set of files or from bindata (more on that later): Then use the Exec function to upgrade your database: Note that n can be greater than 0 even if there is an error: any migration that succeeded will remain applied even if a later one fails. The full set of capabilities can be found in the API docs below. Migrations are defined in SQL files, which contain a set of SQL statements. Special comments are used to distinguish up and down migrations. You can put multiple statements in each block, as long as you end them with a semicolon (;). If you have complex statements which contain semicolons, use StatementBegin and StatementEnd to indicate boundaries: The order in which migrations are applied is defined through the filename: sql-migrate will sort migrations based on their name. It's recommended to use an increasing version number or a timestamp as the first part of the filename. Normally each migration is run within a transaction in order to guarantee that it is fully atomic. However some SQL commands (for example creating an index concurrently in PostgreSQL) cannot be executed inside a transaction. In order to execute such a command in a migration, the migration can be run using the notransaction option: If you like your Go applications self-contained (that is: a single binary): use packr (https://github.com/gobuffalo/packr) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Use the PackrMigrationSource in your application to find the migrations: If you already have a box and would like to use a subdirectory: As an alternative, but slightly less maintained, you can use bindata (https://github.com/shuLhan/go-bindata) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Then use bindata to generate a .go file with the migrations embedded: The resulting bindata.go file will contain your migrations. Remember to regenerate your bindata.go file whenever you add/modify a migration (go generate will help here, once it arrives). Use the AssetMigrationSource in your application to find the migrations: Both Asset and AssetDir are functions provided by bindata. Then proceed as usual. Adding a new migration source means implementing MigrationSource. The resulting slice of migrations will be executed in the given order, so it should usually be sorted by the Id field.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.6.0 The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package iris is a fully-featured HTTP/2 backend web framework written entirely in Google’s Go Language. Source code and other details for the project are available at GitHub: The only requirement is the Go Programming Language, at least version 1.8 Example code: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, Iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more context.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: Iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of Iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known paramete and custom http errors, now it's time to see wildcard parameters and macros. Iris, like net/http std package registers route's handlers by a Handler, the Iris' type of handler is just a func(ctx context.Context) where context comes from github.com/kataras/iris/context. Until go 1.9 you will have to import that package too, after go 1.9 this will be not be necessary. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, Iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, I am calling them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that Iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: Iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context.ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/intermediate/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Built'n Middleware: Community Middleware: Home Page:
Package cninfra is the parent package for all packages that are parts of the CN-Infra platform - a Golang platform for building cloud-native microservices. The CN-Infra platform is a modular platform comprising a core and a set of plugins. The core provides lifecycle management for plugins, the plugins provide the functionality of the platform. A plugin can consist of one or more Golang packages. Out of the box, the CN-Infra platform provides reusable plugins for logging, health checks, messaging (e.g. Kafka), a common front-end API and back-end connectivity to various data stores (Etcd, Cassandra, Redis, ...), and REST and gRPC APIs. The CN-Infra platform can be extended by adding a new platform plugin, for example a new data store client or a message bus adapter. Also, each application built on top of the platform is basically just a set of application-specific plugins.
Package gosnowflake is a pure Go Snowflake driver for the database/sql package. Clients can use the database/sql package directly. For example: Use the Open() function to create a database handle with connection parameters: The Go Snowflake Driver supports the following connection syntaxes (or data source name (DSN) formats): where all parameters must be escaped or use Config and DSN to construct a DSN string. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). The following example opens a database handle with the Snowflake account named "my_account" under the organization named "my_organization", where the username is "jsmith", password is "mypassword", database is "mydb", schema is "testschema", and warehouse is "mywh": The connection string (DSN) can contain both connection parameters (described below) and session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). The following connection parameters are supported: account <string>: Specifies your Snowflake account, where "<string>" is the account identifier assigned to your account by Snowflake. For information about account identifiers, see the Snowflake documentation (https://docs.snowflake.com/en/user-guide/admin-account-identifier.html). If you are using a global URL, then append the connection group and ".global" (e.g. "<account_identifier>-<connection_group>.global"). The account identifier and the connection group are separated by a dash ("-"), as shown above. This parameter is optional if your account identifier is specified after the "@" character in the connection string. region <string>: DEPRECATED. You may specify a region, such as "eu-central-1", with this parameter. However, since this parameter is deprecated, it is best to specify the region as part of the account parameter. For details, see the description of the account parameter. database: Specifies the database to use by default in the client session (can be changed after login). schema: Specifies the database schema to use by default in the client session (can be changed after login). warehouse: Specifies the virtual warehouse to use by default for queries, loading, etc. in the client session (can be changed after login). role: Specifies the role to use by default for accessing Snowflake objects in the client session (can be changed after login). passcode: Specifies the passcode provided by Duo when using multi-factor authentication (MFA) for login. passcodeInPassword: false by default. Set to true if the MFA passcode is embedded in the login password. Appends the MFA passcode to the end of the password. loginTimeout: Specifies the timeout, in seconds, for login. The default is 60 seconds. The login request gives up after the timeout length if the HTTP response is success. authenticator: Specifies the authenticator to use for authenticating user credentials: To use the internal Snowflake authenticator, specify snowflake (Default). To authenticate through Okta, specify https://<okta_account_name>.okta.com (URL prefix for Okta). To authenticate using your IDP via a browser, specify externalbrowser. To authenticate via OAuth, specify oauth and provide an OAuth Access Token (see the token parameter below). application: Identifies your application to Snowflake Support. insecureMode: false by default. Set to true to bypass the Online Certificate Status Protocol (OCSP) certificate revocation check. IMPORTANT: Change the default value for testing or emergency situations only. token: a token that can be used to authenticate. Should be used in conjunction with the "oauth" authenticator. client_session_keep_alive: Set to true have a heartbeat in the background every hour to keep the connection alive such that the connection session will never expire. Care should be taken in using this option as it opens up the access forever as long as the process is alive. ocspFailOpen: true by default. Set to false to make OCSP check fail closed mode. validateDefaultParameters: true by default. Set to false to disable checks on existence and privileges check for Database, Schema, Warehouse and Role when setting up the connection All other parameters are interpreted as session parameters (https://docs.snowflake.com/en/sql-reference/parameters.html). For example, the TIMESTAMP_OUTPUT_FORMAT session parameter can be set by adding: A complete connection string looks similar to the following: Session-level parameters can also be set by using the SQL command "ALTER SESSION" (https://docs.snowflake.com/en/sql-reference/sql/alter-session.html). Alternatively, use OpenWithConfig() function to create a database handle with the specified Config. The Go Snowflake Driver honors the environment variables HTTP_PROXY, HTTPS_PROXY and NO_PROXY for the forward proxy setting. NO_PROXY specifies which hostname endings should be allowed to bypass the proxy server, e.g. no_proxy=.amazonaws.com means that Amazon S3 access does not need to go through the proxy. NO_PROXY does not support wildcards. Each value specified should be one of the following: The end of a hostname (or a complete hostname), for example: ".amazonaws.com" or "xy12345.snowflakecomputing.com". An IP address, for example "192.196.1.15". If more than one value is specified, values should be separated by commas, for example: By default, the driver's builtin logger is exposing logrus's FieldLogger and default at INFO level. Users can use SetLogger in driver.go to set a customized logger for gosnowflake package. In order to enable debug logging for the driver, user could use SetLogLevel("debug") in SFLogger interface as shown in demo code at cmd/logger.go. To redirect the logs SFlogger.SetOutput method could do the work. A specific query request ID can be set in the context and will be passed through in place of the default randomized request ID. For example: From 0.5.0, a signal handling responsibility has moved to the applications. If you want to cancel a query/command by Ctrl+C, add a os.Interrupt trap in context to execute methods that can take the context parameter (e.g. QueryContext, ExecContext). See cmd/selectmany.go for the full example. The Go Snowflake Driver now supports the Arrow data format for data transfers between Snowflake and the Golang client. The Arrow data format avoids extra conversions between binary and textual representations of the data. The Arrow data format can improve performance and reduce memory consumption in clients. Snowflake continues to support the JSON data format. The data format is controlled by the session-level parameter GO_QUERY_RESULT_FORMAT. To use JSON format, execute: The valid values for the parameter are: If the user attempts to set the parameter to an invalid value, an error is returned. The parameter name and the parameter value are case-insensitive. This parameter can be set only at the session level. Usage notes: The Arrow data format reduces rounding errors in floating point numbers. You might see slightly different values for floating point numbers when using Arrow format than when using JSON format. In order to take advantage of the increased precision, you must pass in the context.Context object provided by the WithHigherPrecision function when querying. Traditionally, the rows.Scan() method returned a string when a variable of types interface was passed in. Turning on the flag ENABLE_HIGHER_PRECISION via WithHigherPrecision will return the natural, expected data type as well. For some numeric data types, the driver can retrieve larger values when using the Arrow format than when using the JSON format. For example, using Arrow format allows the full range of SQL NUMERIC(38,0) values to be retrieved, while using JSON format allows only values in the range supported by the Golang int64 data type. Users should ensure that Golang variables are declared using the appropriate data type for the full range of values contained in the column. For an example, see below. When using the Arrow format, the driver supports more Golang data types and more ways to convert SQL values to those Golang data types. The table below lists the supported Snowflake SQL data types and the corresponding Golang data types. The columns are: The SQL data type. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from Arrow data format via an interface{}. The possible Golang data types that can be returned when you use snowflakeRows.Scan() to read data from Arrow data format directly. The default Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format via an interface{}. (All returned values are strings.) The standard Golang data type that is returned when you use snowflakeRows.Scan() to read data from JSON data format directly. Go Data Types for Scan() =================================================================================================================== | ARROW | JSON =================================================================================================================== SQL Data Type | Default Go Data Type | Supported Go Data | Default Go Data Type | Supported Go Data | for Scan() interface{} | Types for Scan() | for Scan() interface{} | Types for Scan() =================================================================================================================== BOOLEAN | bool | string | bool ------------------------------------------------------------------------------------------------------------------- VARCHAR | string | string ------------------------------------------------------------------------------------------------------------------- DOUBLE | float32, float64 [1] , [2] | string | float32, float64 ------------------------------------------------------------------------------------------------------------------- INTEGER that | int, int8, int16, int32, int64 | string | int, int8, int16, fits in int64 | [1] , [2] | | int32, int64 ------------------------------------------------------------------------------------------------------------------- INTEGER that doesn't | int, int8, int16, int32, int64, *big.Int | string | error fit in int64 | [1] , [2] , [3] , [4] | ------------------------------------------------------------------------------------------------------------------- NUMBER(P, S) | float32, float64, *big.Float | string | float32, float64 where S > 0 | [1] , [2] , [3] , [5] | ------------------------------------------------------------------------------------------------------------------- DATE | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIME | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_LTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_NTZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- TIMESTAMP_TZ | time.Time | string | time.Time ------------------------------------------------------------------------------------------------------------------- BINARY | []byte | string | []byte ------------------------------------------------------------------------------------------------------------------- ARRAY | string | string ------------------------------------------------------------------------------------------------------------------- OBJECT | string | string ------------------------------------------------------------------------------------------------------------------- VARIANT | string | string [1] Converting from a higher precision data type to a lower precision data type via the snowflakeRows.Scan() method can lose low bits (lose precision), lose high bits (completely change the value), or result in error. [2] Attempting to convert from a higher precision data type to a lower precision data type via interface{} causes an error. [3] Higher precision data types like *big.Int and *big.Float can be accessed by querying with a context returned by WithHigherPrecision(). [4] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Int64()/.String()/.Uint64() methods. For an example, see below. [5] You cannot directly Scan() into the alternative data types via snowflakeRows.Scan(), but can convert to those data types by using .Float32()/.String()/.Float64() methods. For an example, see below. Note: SQL NULL values are converted to Golang nil values, and vice-versa. The following example shows how to retrieve very large values using the math/big package. This example retrieves a large INTEGER value to an interface and then extracts a big.Int value from that interface. If the value fits into an int64, then the code also copies the value to a variable of type int64. Note that a context that enables higher precision must be passed in with the query. If the variable named "rows" is known to contain a big.Int, then you can use the following instead of scanning into an interface and then converting to a big.Int: If the variable named "rows" contains a big.Int, then each of the following fails: Similar code and rules also apply to big.Float values. If you are not sure what data type will be returned, you can use code similar to the following to check the data type of the returned value: Binding allows a SQL statement to use a value that is stored in a Golang variable. Without binding, a SQL statement specifies values by specifying literals inside the statement. For example, the following statement uses the literal value “42“ in an UPDATE statement: With binding, you can execute a SQL statement that uses a value that is inside a variable. For example: The “?“ inside the “VALUES“ clause specifies that the SQL statement uses the value from a variable. Binding data that involves time zones can require special handling. For details, see the section titled "Timestamps with Time Zones". Version 1.3.9 (and later) of the Go Snowflake Driver supports the ability to bind an array variable to a parameter in a SQL INSERT statement. You can use this technique to insert multiple rows in a single batch. As an example, the following code inserts rows into a table that contains integer, float, boolean, and string columns. The example binds arrays to the parameters in the INSERT statement. Note: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). When you use array binding to insert a large number of values, the driver can improve performance by streaming the data (without creating files on the local machine) to a temporary stage for ingestion. The driver automatically does this when the number of values exceeds a threshold (no changes are needed to user code). In order for the driver to send the data to a temporary stage, the user must have the following privilege on the schema: If the user does not have this privilege, the driver falls back to sending the data with the query to the Snowflake database. In addition, the current database and schema for the session must be set. If these are not set, the CREATE TEMPORARY STAGE command executed by the driver can fail with the following error: For alternative ways to load data into the Snowflake database (including bulk loading using the COPY command), see Loading Data into Snowflake (https://docs.snowflake.com/en/user-guide-data-load.html). Go's database/sql package supports the ability to bind a parameter in a SQL statement to a time.Time variable. However, when the client binds data to send to the server, the driver cannot determine the correct Snowflake date/timestamp data type to associate with the binding parameter. For example: To resolve this issue, a binding parameter flag is introduced that associates any subsequent time.Time type to the DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ or BINARY data type. The above example could be rewritten as follows: The driver fetches TIMESTAMP_TZ (timestamp with time zone) data using the offset-based Location types, which represent a collection of time offsets in use in a geographical area, such as CET (Central European Time) or UTC (Coordinated Universal Time). The offset-based Location data is generated and cached when a Go Snowflake Driver application starts, and if the given offset is not in the cache, it is generated dynamically. Currently, Snowflake does not support the name-based Location types (e.g. "America/Los_Angeles"). For more information about Location types, see the Go documentation for https://golang.org/pkg/time/#Location. Internally, this feature leverages the []byte data type. As a result, BINARY data cannot be bound without the binding parameter flag. In the following example, sf is an alias for the gosnowflake package: The driver directly downloads a result set from the cloud storage if the size is large. It is required to shift workloads from the Snowflake database to the clients for scale. The download takes place by goroutine named "Chunk Downloader" asynchronously so that the driver can fetch the next result set while the application can consume the current result set. The application may change the number of result set chunk downloader if required. Note this does not help reduce memory footprint by itself. Consider Custom JSON Decoder. Custom JSON Decoder for Parsing Result Set (Experimental) The application may have the driver use a custom JSON decoder that incrementally parses the result set as follows. This option will reduce the memory footprint to half or even quarter, but it can significantly degrade the performance depending on the environment. The test cases running on Travis Ubuntu box show five times less memory footprint while four times slower. Be cautious when using the option. The Go Snowflake Driver supports JWT (JSON Web Token) authentication. To enable this feature, construct the DSN with fields "authenticator=SNOWFLAKE_JWT&privateKey=<your_private_key>", or using a Config structure specifying: The <your_private_key> should be a base64 URL encoded PKCS8 rsa private key string. One way to encode a byte slice to URL base 64 URL format is through the base64.URLEncoding.EncodeToString() function. On the server side, you can alter the public key with the SQL command: The <your_public_key> should be a base64 Standard encoded PKI public key string. One way to encode a byte slice to base 64 Standard format is through the base64.StdEncoding.EncodeToString() function. To generate the valid key pair, you can execute the following commands in the shell: Note: As of February 2020, Golang's official library does not support passcode-encrypted PKCS8 private key. For security purposes, Snowflake highly recommends that you store the passcode-encrypted private key on the disk and decrypt the key in your application using a library you trust. This feature is available in version 1.3.8 or later of the driver. By default, Snowflake returns an error for queries issued with multiple statements. This restriction helps protect against SQL Injection attacks (https://en.wikipedia.org/wiki/SQL_injection). The multi-statement feature allows users skip this restriction and execute multiple SQL statements through a single Golang function call. However, this opens up the possibility for SQL injection, so it should be used carefully. The risk can be reduced by specifying the exact number of statements to be executed, which makes it more difficult to inject a statement by appending it. More details are below. The Go Snowflake Driver provides two functions that can execute multiple SQL statements in a single call: To compose a multi-statement query, simply create a string that contains all the queries, separated by semicolons, in the order in which the statements should be executed. To protect against SQL Injection attacks while using the multi-statement feature, pass a Context that specifies the number of statements in the string. For example: When multiple queries are executed by a single call to QueryContext(), multiple result sets are returned. After you process the first result set, get the next result set (for the next SQL statement) by calling NextResultSet(). The following pseudo-code shows how to process multiple result sets: The function db.ExecContext() returns a single result, which is the sum of the number of rows changed by each individual statement. For example, if your multi-statement query executed two UPDATE statements, each of which updated 10 rows, then the result returned would be 20. Individual row counts for individual statements are not available. The following code shows how to retrieve the result of a multi-statement query executed through db.ExecContext(): Note: Because a multi-statement ExecContext() returns a single value, you cannot detect offsetting errors. For example, suppose you expected the return value to be 20 because you expected each UPDATE statement to update 10 rows. If one UPDATE statement updated 15 rows and the other UPDATE statement updated only 5 rows, the total would still be 20. You would see no indication that the UPDATES had not functioned as expected. The ExecContext() function does not return an error if passed a query (e.g. a SELECT statement). However, it still returns only a single value, not a result set, so using it to execute queries (or a mix of queries and non-query statements) is impractical. The QueryContext() function does not return an error if passed non-query statements (e.g. DML). The function returns a result set for each statement, whether or not the statement is a query. For each non-query statement, the result set contains a single row that contains a single column; the value is the number of rows changed by the statement. If you want to execute a mix of query and non-query statements (e.g. a mix of SELECT and DML statements) in a multi-statement query, use QueryContext(). You can retrieve the result sets for the queries, and you can retrieve or ignore the row counts for the non-query statements. Note: PUT statements are not supported for multi-statement queries. If a SQL statement passed to ExecQuery() or QueryContext() fails to compile or execute, that statement is aborted, and subsequent statements are not executed. Any statements prior to the aborted statement are unaffected. For example, if the statements below are run as one multi-statement query, the multi-statement query fails on the third statement, and an exception is thrown. If you then query the contents of the table named "test", the values 1 and 2 would be present. When using the QueryContext() and ExecContext() functions, golang code can check for errors the usual way. For example: Preparing statements and using bind variables are also not supported for multi-statement queries. The Go Snowflake Driver supports asynchronous execution of SQL statements. Asynchronous execution allows you to start executing a statement and then retrieve the result later without being blocked while waiting. While waiting for the result of a SQL statement, you can perform other tasks, including executing other SQL statements. Most of the steps to execute an asynchronous query are the same as the steps to execute a synchronous query. However, there is an additional step, which is that you must call the WithAsyncMode() function to update your Context object to specify that asynchronous mode is enabled. In the code below, the call to "WithAsyncMode()" is specific to asynchronous mode. The rest of the code is compatible with both asynchronous mode and synchronous mode. The function db.QueryContext() returns an object of type snowflakeRows regardless of whether the query is synchronous or asynchronous. However: The call to the Next() function of snowflakeRows is always synchronous (i.e. blocking). If the query has not yet completed and the snowflakeRows object (named "rows" in this example) has not been filled in yet, then rows.Next() waits until the result set has been filled in. More generally, calls to any Golang SQL API function implemented in snowflakeRows or snowflakeResult are blocking calls, and wait if results are not yet available. (Examples of other synchronous calls include: snowflakeRows.Err(), snowflakeRows.Columns(), snowflakeRows.columnTypes(), snowflakeRows.Scan(), and snowflakeResult.RowsAffected().) Because the example code above executes only one query and no other activity, there is no significant difference in behavior between asynchronous and synchronous behavior. The differences become significant if, for example, you want to perform some other activity after the query starts and before it completes. The example code below starts multiple queries, which run in the background, and then retrieves the results later. This example uses small SELECT statements that do not retrieve enough data to require asynchronous handling. However, the technique works for larger data sets, and for situations where the programmer might want to do other work after starting the queries and before retrieving the results. The Go Snowflake Driver supports the PUT and GET commands. The PUT command copies a file from a local computer (the computer where the Golang client is running) to a stage on the cloud platform. The GET command copies data files from a stage on the cloud platform to a local computer. See the following for information on the syntax and supported parameters: The following example shows how to run a PUT command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example: Different client platforms (e.g. linux, Windows) have different path name conventions. Ensure that you specify path names appropriately. This is particularly important on Windows, which uses the backslash character as both an escape character and as a separator in path names. To send information from a stream (rather than a file) use code similar to the code below. (The ReplaceAll() function is needed on Windows to handle backslashes in the path to the file.) Note: PUT statements are not supported for multi-statement queries. The following example shows how to run a GET command by passing a string to the db.Query() function: "<local_file>" should include the file path as well as the name. Snowflake recommends using an absolute path rather than a relative path. For example:
Package duit is a pure go, cross-platform, MIT-licensed, UI toolkit for developers. The examples/ directory has small code examples for working with duit and its UIs. Examples are the recommended starting point. Start with NewDUI to create a DUI: essentially a window and all the UI state. The user interface consists of a hierarchy of "UIs" like Box, Scroll, Button, Label, etc. They are called UIs, after the interface UI they all implement. The zero structs for UIs have sane default behaviour so you only have to fill in the fields you need. UIs are kept/wrapped in a Kid, to track their layout/draw state. Use NewKids() to build up the UIs for your application. You won't see much of the Kid-types/functions otherwise, unless you implement a new UI. You are in charge of the main event loop, receiving mouse/keyboard/window events from the dui.Inputs channel, and typically passing them on unchanged to dui.Input. All callbacks and functions on UIs are called from inside dui.Input. From there you can also safely change the the UIs, no locking required. After changing a UI you are responsible for calling MarkLayout or MarkDraw to tell duit the UI needs a new layout or draw. This may sound like more work, but this tradeoff keeps the API small and easy to use. If you need to change the UI from a goroutine outside of the main loop, e.g. for blocking calls, you can send a function that makes those modifications on the dui.Call channel, which will be run on the main channel through dui.Inputs. After handling an input, duit will layout or draw as necessary, no need to render explicitly. Embedding a UI into your own data structure is often an easy way to build up UI hiearchies. Scroll and Edit show a scrollbar. Use button 1 on the scrollbar to scroll up, button 3 to scroll down. If you click more near the top, you scroll less. More near the bottom, more. Button 2 scrolls to the absolute place, where you clicked. Button 4 and 5 are wheel up and wheel down, and also scroll less/more depending on position in the UI.